期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Catalytic ozonation performance and surface property of supported Fe304 catalysts dispersions 被引量:3
1
作者 Zhendong YANG Aihua LV Yulun NIE Chun HU 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2013年第3期451-456,共6页
Fe304 was supported on mesoporous A12O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe304/A12O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyace- tic acid... Fe304 was supported on mesoporous A12O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe304/A12O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyace- tic acid andpara-chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe304 on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO2, more Lewis acid sites existed on the surface of A12O3, resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe304/A12O3 exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment. 展开更多
关键词 heterogeneous catalytic ozonation iron oxi-des supports surface Lewis acid sites
原文传递
On the monolayer dispersion behavior of Co_(3)O_(4)on HZSM-5 support:designing applicable catalysts for selective catalytic reduction of nitrogen oxides by ammonia
2
作者 Yufeng Yang Lihong Zhang +7 位作者 Tao Song Yixing Huang Xianglan Xu Junwei Xu Xiuzhong Fang Qing Wang Haiming Liu Xiang Wang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第11期1741-1754,共14页
Based on monolayer dispersion theory,Co_(3)O_(4)/ZSM-5 catalysts with different loadings have been prepared for selective catalytic reduction of nitrogen oxides by ammonia.Co_(3)O_(4)can spontaneously disperse on HZSM... Based on monolayer dispersion theory,Co_(3)O_(4)/ZSM-5 catalysts with different loadings have been prepared for selective catalytic reduction of nitrogen oxides by ammonia.Co_(3)O_(4)can spontaneously disperse on HZSM-5 support with a monolayer dispersion threshold of 0.061 mmol 100 m^(-2),equaling to a weight percentage around 4.5%.It has been revealed that the quantities of surface active oxygen(O_(2)^(-))and acid sites are crucial for the reaction,which can adsorb and activate NO_(x)and NH_(3)reactants effectively.Below the monolayer dispersion threshold,Co_(3)O_(4)is finely dispersed as sub-monolayers or monolayers and in an amorphous state,which is favorable to generate the two kinds of active sites,hence promoting the performance of ammonia selective catalytic reduction of nitrogen oxide.However,the formation of crystalline Co_(3)O_(4)above the capacity is harmful to the reaction performance.4%Co_(3)O_(4)/ZSM-5,the catalyst close to the monolayer dispersion capacity,possesses the most abundant active O_(2)^(-)species and acidic sites,thereby demonstrating the best reaction performance in all the samples.It is proposed the optimal Co_(3)O_(4)/ZSM-5 catalyst can be prepared by loading the capacity amount of Co_(3)O_(4)onto HZSM-5 support. 展开更多
关键词 Co_(3)O_(4)/ZSM-5 NO_(x)-SCR by NH_(3) monolayer dispersion threshold effect surface acid sites surface active O_(2)^(-)anions
原文传递
Modification of Cu/ZSM-5 catalyst with CeO_2 for selective catalytic reduction of NO_x with ammonia 被引量:15
3
作者 刘雪松 吴晓东 +1 位作者 翁端 石磊 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第10期1004-1009,共6页
Cu/ZSM-5 and CeO_2-modified Cu/ZSM-5 catalysts were prepared by a wetness impregnation method. The addition of CeO_2 was found to enhance the NO_x selective catalytic reduction(SCR) activity of the catalyst at low t... Cu/ZSM-5 and CeO_2-modified Cu/ZSM-5 catalysts were prepared by a wetness impregnation method. The addition of CeO_2 was found to enhance the NO_x selective catalytic reduction(SCR) activity of the catalyst at low temperatures, but the high-temperature activity was weakened. The catalysts were characterized by X-ray diffraction(XRD), nitrogen physisorption, inductively coupled plasma optical emission spectrometry(ICP-OES), X-ray photoelectron spectroscopy(XPS), electron paramagnetic resonance(EPR), H_2 temperature-programmed reduction(TPR) and NH_3 temperature-programmed desorption(TPD). The results showed that more CuO clusters instead of isolated Cu^(2+) species were obtained on the modified catalyst. These active CuO clusters, as well as the Cu-Ce synergistic effect, improved the redox property of the catalyst and low-temperatures SCR activity via promoting the oxidation of NO to NO_2 and fast SCR reaction. The loss in high-temperatures activity was attributed to the enhanced competitive oxidation of NH_3 by O_2 and decreased surface acidity of the catalyst. 展开更多
关键词 Cu/ZSM-5 CeO_2 modification NH3-SCR CuO clusters surface acid sites rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部