The aging effects of the contact angle and surface energy on polyethylene terephthalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact ang...The aging effects of the contact angle and surface energy on polyethylene terephthalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact angle of water and PET decreases obviously and surface energy increases. However, with the increase of the aging time, the contact angle and surface energy change back gradually to original state.展开更多
The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy...The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy(XPS),sumfrequency generation(SFG)vibrational spectroscopy,and atomic force microscopy(AFM)were used to infer the surfaceproperties and structure.Chemical groups containing oxygen were formed on the PS surface with the plasma treatment,demonstrated by water contact angle and XPS.The surface polarity decayed markedly on time,as assessed by steady increasein the water contact angle as a function of storage time,from zero to around 60°.The observed decay is interpreted as arisingfrom surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces,which is incontact with air.On the other hand,XPS results show that the chemical composition in the first 3 nm surface layer isunaffected by the surface aging,and the depth profile of oxygen is essentially the same with time.A possible change of PSsurface roughness was examined by AFM,and it showed that the increase of water contact angle during surface aging couldnot be attributed to surface roughness.Thus,it is concluded that surface aging is attributable to surface reorganization andthe motion of oxygen containing groups is confined within the XPS probing depth.SFG spectroscopy,which is intrinsicallyinterface-specific,was used to detect the chemical structure of PS surface at the molecular level after various aging times.The results are interpreted as follows.During the aging of the plasma treated PS surfaces,the oxygen containing groupsundergo reorientation processes toward the polymer bulk and/or parallel to the surface,while the CH_2 moiety stands up onthe PS surface.Our results indicate that the surface configuration changes do not require large length scale segmentalmotions or migration of macromolecules.Motions that are responsible for surface configuration changes could be relativelysmall rotational motions.The aging behaviors under different relative humidity conditions were shown to be similar from18% to 91%,whereas the kinetics of surface polarity decays were faster in higher relative humidity.Here,the surfacerearrangement of polystyrene films that were previously treated by oxygen plasma and aged,and was investigated in terms ofcontact angle after the water immersion.The contact angles of the water-immersed samples were found to change andapproach the initial values before the immersion asymptotically.展开更多
Adsorption behavior of Fe atoms on a metal-free naphthalocyanine(H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional th...Adsorption behavior of Fe atoms on a metal-free naphthalocyanine(H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory(DFT)based calculations. We found that the Fe atoms were adsorbed on the centers of H2Nc molecules and formed Fe–H2Nc complexes at low coverage. DFT calculations show that Fe sited in the center of the molecule is the most stable configuration, in good agreement with the experimental observations. After an Fe–H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe–H2Nc complex monolayer. Therefore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.展开更多
Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on...Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on Si(001),a silver wetting layer is evaporated onto the substrate surface kept at room temperature with Er Si2 nanoislands already existing. The effects of the silver layer on the current-voltage characteristics of nanocontacts are discussed.Our experimental results reveal that the silver layer at coverage of 0.4–0.7 monolayer can suppress effectively the current contribution from the surface conduction path. After the surface leakage path of nanocontacts is obstructed, the ideality factor and the Schottky barrier height are determined using the thermionic emission theory, about 2 and 0.5 eV, respectively. The approach adopted here could shed light on the intrinsic transport properties of metal-semiconductor nanocontacts.展开更多
Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(Ⅱ) adsorption, we analyzed the surface properties b...Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(Ⅱ) adsorption, we analyzed the surface properties before and after biochar aging with scanning electron microscopy(SEM) coupled to an energy-dispersive X-ray spectrometer(EDX) and diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), and then explored the influence of the aging process on Cu(Ⅱ) adsorption by batch experiments. After the aging process, the oxygen concentration, phenolic hydroxyl groups, aromatic ethers and other oxygen-containing functional groups on the biochar surface increased, while carboxyl groups slightly decreased. Thus, over a range of pH, the cation exchange capacity(CEC) and adsorption capacity of Cu(Ⅱ) on the aged biochar were smaller than those of new biochar,indicating that when biochar is incubated at constant temperature and water holding capacity in the dark, the aging process may inhibit Cu(Ⅱ) adsorption. Meanwhile, the dissociation characteristics of oxygen-containing functional groups changed through the aging process, which may be the mechanism by which the biochar aging process inhibits the Cu(Ⅱ) adsorption. Carboxyl groups became more easily dissociated at low pH(3.3–5.0),and the variation of maximum adsorption capability(qm) of Cu(Ⅱ) on the old biochar was enlarged. Phenolic hydroxyl groups increased after the aging, making them and carboxyl groups more difficult to dissociate at high pH(5.0–6.8), and the variation of qmof Cu(Ⅱ) on the aged biochar was reduced.展开更多
Surface Ag granular packs(SAgPs) have been fabricated from dual-phase Ag_(35.5)Zn_(64.5) precursor alloy consisting of both e and c phases by using a facile one-step triangle wave potential cycling in 0.5 mol·L^(...Surface Ag granular packs(SAgPs) have been fabricated from dual-phase Ag_(35.5)Zn_(64.5) precursor alloy consisting of both e and c phases by using a facile one-step triangle wave potential cycling in 0.5 mol·L^(-1) KOH.During the continuous potential cyclic sweeping, the c phases preferentially dissolve during the anodic scan and dominant reduction reactions of Ag cations lead to redeposition and accumulation of Ag atoms together to form SAg Ps during cathodic scan. The e phases stay inactive to form a continuous skeleton in the inner regions. SAg Ps with an average particle size of 94-129 nm can be obtained at scan rates of 25, 50 and 100 mV·s^(-1) for 100 triangle wave potential cycles. SAgPs formed at a scan rate of 50 mV·s^(-1) exhibit superior oxygen reduction reaction performances with the onset potential of 0.93 V, half-wave potential of 0.72 V and an electron transfer number of 4.0.The above-mentioned SAgPs have superior stabilities as ORR catalysts.展开更多
We report an experimental study on the synthesis of metal nanoparticles (NPs) with adjustable optical density based on surface plasmon resonance (SPR). Metal NPs prepared by laser ablation in liquid method and the...We report an experimental study on the synthesis of metal nanoparticles (NPs) with adjustable optical density based on surface plasmon resonance (SPR). Metal NPs prepared by laser ablation in liquid method and the effect of laser parameters on the size, distribution, wavelength of SPR of Ag, Au, and mixture of Ag-Au, and Ag core/Au shell NPs are investigated. Our results show that the adjustable SPR band can be achieved in each class of NPs which is suitable for adjustable optical window applications.展开更多
文摘The aging effects of the contact angle and surface energy on polyethylene terephthalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact angle of water and PET decreases obviously and surface energy increases. However, with the increase of the aging time, the contact angle and surface energy change back gradually to original state.
基金This work was funded in part by NSF(DMR-0084301)Eastman Kodak Company.
文摘The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy(XPS),sumfrequency generation(SFG)vibrational spectroscopy,and atomic force microscopy(AFM)were used to infer the surfaceproperties and structure.Chemical groups containing oxygen were formed on the PS surface with the plasma treatment,demonstrated by water contact angle and XPS.The surface polarity decayed markedly on time,as assessed by steady increasein the water contact angle as a function of storage time,from zero to around 60°.The observed decay is interpreted as arisingfrom surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces,which is incontact with air.On the other hand,XPS results show that the chemical composition in the first 3 nm surface layer isunaffected by the surface aging,and the depth profile of oxygen is essentially the same with time.A possible change of PSsurface roughness was examined by AFM,and it showed that the increase of water contact angle during surface aging couldnot be attributed to surface roughness.Thus,it is concluded that surface aging is attributable to surface reorganization andthe motion of oxygen containing groups is confined within the XPS probing depth.SFG spectroscopy,which is intrinsicallyinterface-specific,was used to detect the chemical structure of PS surface at the molecular level after various aging times.The results are interpreted as follows.During the aging of the plasma treated PS surfaces,the oxygen containing groupsundergo reorientation processes toward the polymer bulk and/or parallel to the surface,while the CH_2 moiety stands up onthe PS surface.Our results indicate that the surface configuration changes do not require large length scale segmentalmotions or migration of macromolecules.Motions that are responsible for surface configuration changes could be relativelysmall rotational motions.The aging behaviors under different relative humidity conditions were shown to be similar from18% to 91%,whereas the kinetics of surface polarity decays were faster in higher relative humidity.Here,the surfacerearrangement of polystyrene films that were previously treated by oxygen plasma and aged,and was investigated in terms ofcontact angle after the water immersion.The contact angles of the water-immersed samples were found to change andapproach the initial values before the immersion asymptotically.
基金supported by the National Natural Science Foundation of China(Grant Nos.61390501,51325204,and 11204361)the National Basic Research Program of China(Grant Nos.2011CB808401 and 2011CB921702)+1 种基金the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ1203451)the National Supercomputing Center in Tianjin,China,and the Chinese Academy of Sciences
文摘Adsorption behavior of Fe atoms on a metal-free naphthalocyanine(H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory(DFT)based calculations. We found that the Fe atoms were adsorbed on the centers of H2Nc molecules and formed Fe–H2Nc complexes at low coverage. DFT calculations show that Fe sited in the center of the molecule is the most stable configuration, in good agreement with the experimental observations. After an Fe–H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe–H2Nc complex monolayer. Therefore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.
基金Supported by the National Natural Science Foundation of China under Grant No 11374058
文摘Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on Si(001),a silver wetting layer is evaporated onto the substrate surface kept at room temperature with Er Si2 nanoislands already existing. The effects of the silver layer on the current-voltage characteristics of nanocontacts are discussed.Our experimental results reveal that the silver layer at coverage of 0.4–0.7 monolayer can suppress effectively the current contribution from the surface conduction path. After the surface leakage path of nanocontacts is obstructed, the ideality factor and the Schottky barrier height are determined using the thermionic emission theory, about 2 and 0.5 eV, respectively. The approach adopted here could shed light on the intrinsic transport properties of metal-semiconductor nanocontacts.
基金supported by the National Natural Science Foundation of China (No. 41271246)the National Key Technology R&D Program of China (No. 2013BAC09B01)
文摘Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(Ⅱ) adsorption, we analyzed the surface properties before and after biochar aging with scanning electron microscopy(SEM) coupled to an energy-dispersive X-ray spectrometer(EDX) and diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), and then explored the influence of the aging process on Cu(Ⅱ) adsorption by batch experiments. After the aging process, the oxygen concentration, phenolic hydroxyl groups, aromatic ethers and other oxygen-containing functional groups on the biochar surface increased, while carboxyl groups slightly decreased. Thus, over a range of pH, the cation exchange capacity(CEC) and adsorption capacity of Cu(Ⅱ) on the aged biochar were smaller than those of new biochar,indicating that when biochar is incubated at constant temperature and water holding capacity in the dark, the aging process may inhibit Cu(Ⅱ) adsorption. Meanwhile, the dissociation characteristics of oxygen-containing functional groups changed through the aging process, which may be the mechanism by which the biochar aging process inhibits the Cu(Ⅱ) adsorption. Carboxyl groups became more easily dissociated at low pH(3.3–5.0),and the variation of maximum adsorption capability(qm) of Cu(Ⅱ) on the old biochar was enlarged. Phenolic hydroxyl groups increased after the aging, making them and carboxyl groups more difficult to dissociate at high pH(5.0–6.8), and the variation of qmof Cu(Ⅱ) on the aged biochar was reduced.
基金financially supported by the State Key Laboratory of Advanced Metals and Materials (No.2018-ZD04)the State Key Laboratory of Metal Material for Marine Equipment and Application (No. SKLMEA-K201806)+2 种基金the Natural Science Foundation of China (Nos. 51671106 and 51931008)the Natural Science Foundation of Jiangsu Province (Nos. BK20171424and BE2019119)the National Defense Basic Scientific Research Program of China (No. JCKY08414C020)。
文摘Surface Ag granular packs(SAgPs) have been fabricated from dual-phase Ag_(35.5)Zn_(64.5) precursor alloy consisting of both e and c phases by using a facile one-step triangle wave potential cycling in 0.5 mol·L^(-1) KOH.During the continuous potential cyclic sweeping, the c phases preferentially dissolve during the anodic scan and dominant reduction reactions of Ag cations lead to redeposition and accumulation of Ag atoms together to form SAg Ps during cathodic scan. The e phases stay inactive to form a continuous skeleton in the inner regions. SAg Ps with an average particle size of 94-129 nm can be obtained at scan rates of 25, 50 and 100 mV·s^(-1) for 100 triangle wave potential cycles. SAgPs formed at a scan rate of 50 mV·s^(-1) exhibit superior oxygen reduction reaction performances with the onset potential of 0.93 V, half-wave potential of 0.72 V and an electron transfer number of 4.0.The above-mentioned SAgPs have superior stabilities as ORR catalysts.
文摘We report an experimental study on the synthesis of metal nanoparticles (NPs) with adjustable optical density based on surface plasmon resonance (SPR). Metal NPs prepared by laser ablation in liquid method and the effect of laser parameters on the size, distribution, wavelength of SPR of Ag, Au, and mixture of Ag-Au, and Ag core/Au shell NPs are investigated. Our results show that the adjustable SPR band can be achieved in each class of NPs which is suitable for adjustable optical window applications.