Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface c...Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.展开更多
The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via...The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via using mixed solvents with different evaporation rates. The second solvent, with a higher boiling point than that of the first solvent and much better solubility for PCBM than P3HT, is chosen to mix with the first solvent with a lower boiling point and good solubility for both PCBM and P3HT. The slow evaporation rate of the second solvent provides enough time for PCBM to diffuse upwards during the solvent evaporation. Thus, the weight ratio of PCBM and P3HT (mpcBM/mp3HT) at surface of the blend films was varied from ca. 0.1 to ca. 0.72, i.e., it increases about seven times by changing from single solvent to mixed solvents. Meanwhile, the mixed solvents were in favor to form P3HT naonofiber network and enhance phase separation of P3HT/PCBM blend films. As a result, the power conversion efficiency of the device from mixed solvents with slow evaporation process was about 1.5 times of the one from single solvents.展开更多
This work is aimed to study the effects of component size and solubility on the surface composition of spray dried(SD)uniform two-component particles fabricated by micro-fluidic spray dryer.Various precursor liquid co...This work is aimed to study the effects of component size and solubility on the surface composition of spray dried(SD)uniform two-component particles fabricated by micro-fluidic spray dryer.Various precursor liquid consisting of small molecular of methionine(Met,33 g/L)or lysine(Lys,739 g/L)and large-sized silica(12 nm)were prepared by adjusting the mass ratio of components.X-ray energy disper-sive results showed that the respective enrichment degree(De)of Met and Lys on the surface of SD-M1S9 and-L1S9 prepared at 150 C were 182±9% and 125±14%.The De of hydrophobic Met for SD-M1S1 and-M9S1 were 46±9% and 4±2%,respectively,whereas relative hydrophilic Lys mainly distributed internal of the particle meanwhile the De of silica on the surface for SD-L1S1 and-L9S1 were 17±4%and 12±1%,respectively.Drying temperature(120 and 180℃)showed more apparent effect on the De of amino acid for the particles of less amino acid.The possible formation mechanism of surface composition and the surface composition impact on the wettability of particles were explored.These results provide new guidance for manufacturing functional SD powders with various components.展开更多
Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and ...Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and 159 samples were analyzed to determine detrital minerals. Authigenic minerals, including siderite, pyrite, and glauconite, are abundant whereas secondary minerals, such as chlorite and limonite, are distributed widely in the study area. Siderite has a maximum content of 19.98 g/kg and appears in three types from nearshore to continental shelf, showing the process of forming-maturity-oxidation. In this process, the Mn O content in siderite decreases, but FeOand Mg O content increase. Colorless or transparent siderite pellets are fresh grains generated within a short time and widely distributed throughout the region; high content appears in coastal area where river inputs are discharged. Translucent cemented double pellets appearing light yellow to red are mature grains; high content is observed in the central shelf. Red-brown opaque granular pellets are oxidized grains,which are concentrated in the eastern gulf. Pyrite is mostly distributed in the central continental shelf with an approximately north–south strip. Pyrite are mainly observed in foraminifera shell and distributed in clayey silt sediments, which is similar to that in the Yangtze River mouth and the Yellow Sea. The pyrite in the gulf is deduced from genetic types associated with sulfate reduction and organic matter decomposition. Majority of glauconite are granular with few laminar. Glauconite is concentrated in the northern and southern parts within the boundary of 9.5° to 10.5°N and is affected by river input diffusion. The distribution of glauconite is closely correlated with that of chlorite and plagioclase, indicating that glauconite is possibly derived from altered products of chlorite and plagioclase. The KO content of glauconite is low or absent, indicating its short formation time.展开更多
A surface Ti-WC composite was fabricated on CP-Ti by surface friction stirring(SFS)using a pinless WC-Cotool at a processing window of 800−2500 r/min and 8−50 mm/min.At 1600 r/min-50 mm/min,a defect-free compositelaye...A surface Ti-WC composite was fabricated on CP-Ti by surface friction stirring(SFS)using a pinless WC-Cotool at a processing window of 800−2500 r/min and 8−50 mm/min.At 1600 r/min-50 mm/min,a defect-free compositelayer with an average hardness of~HV 1170 is formed.The hardness was increased by WC and TiN reinforcingparticles,dissolved Co atoms in Ti,and the formation of ultrafine grains.WC particles were incorporated into the Tisubstrate owing to the intense frictional interaction/heating at the tool-plate interface(~1000℃),which led to strengthloss and wear of the tool.The Williamson-Hall analysis of the XRD peaks of the SFSed sample confirmed a significantlysmall crystallite size(~100 nm).Wear tests showed that the wear resistance of the composite structure was about 4.5times higher than that of the CP-Ti.Friction analysis revealed a significant reduction in average value and fluctuations ofthe friction coefficient.展开更多
Germanium-tin films with rather high Sn content (28.04% and 29.61%) are deposited directly on Si (100) and Si (111) substrates by magnetron sputtering. The mechanism of the effect of rapid thermal annealing on t...Germanium-tin films with rather high Sn content (28.04% and 29.61%) are deposited directly on Si (100) and Si (111) substrates by magnetron sputtering. The mechanism of the effect of rapid thermal annealing on the Sn surface segregation of Ge1-xSnx films is investigated by x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The x-ray diffraction (XRD) is also performed to determine the crystallinities of the Ge1-xSnx films. The experimental results indicate that root mean square (RMS) values of the annealed samples are comparatively small and have no noticeable changes for the as-grown sample when annealing temperature is below 400℃. The diameter of the Sn three-dimensional (3D) island becomes larger than that of an as-grown sample when the annealing temperature is 700℃. In addition, the Sn surface composition decreases when annealing temperature ranges from 400℃ to 700℃. However, Sn bulk compositions in samples A and B are kept almost unchanged when the annealing temperature is below 600℃. The present investigation demonstrates that the crystallinity of Ge1-xSnx/Si (111) has no obvious advantage over that of Ge1-xSnx/Si (100) and the selection of Si (111) substrate is an effective method to improve the surface morphologies of Ge1-xSnx films. We also find that more severe Sn surface segregation occurs in the Ge1-xSnx/Si (111) sample during annealing than in the Ge1-xSnx/Si (100) sample.展开更多
Surface metal matrix composites(MMCs)are a group of modern engineered materials where the surface of the material is modified by dispersing secondary phase in the form of particles or fibers and the core of the materi...Surface metal matrix composites(MMCs)are a group of modern engineered materials where the surface of the material is modified by dispersing secondary phase in the form of particles or fibers and the core of the material experience no change in chemical composition and structure.The potential applications of the surface MMCs can be found in automotive,aerospace,biomedical and power industries.Recently,friction stir processing(FSP)technique has been gaining wide popularity in producing surface composites in solid state itself.Magnesium and its alloys being difficult to process metals also have been successfully processed by FSP to fabricate surface MMCs.The aim of the present paper is to provide a comprehensive summary of state-of-the-art in fabricating magnesium based composites by FSP.Influence of the secondary phase particles and grain refinement resulted from FSP on the properties of these composites is also discussed.展开更多
An attempt was made to synthesize Cu/B4C surface composite using friction stir processing(FSP) and to analyze the influence of tool rotational speed on microstructure and sliding wear behavior of the composite. The ...An attempt was made to synthesize Cu/B4C surface composite using friction stir processing(FSP) and to analyze the influence of tool rotational speed on microstructure and sliding wear behavior of the composite. The tool rotational speed was varied from 800 to 1200 r/min in step of 200 r/min. The traverse speed, axial force, groove width and tool pin profile were kept constant. Optical microscopy and scanning electron microscopy were used to study the microstructure of the fabricated surface composites. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The results indicate that the tool rotational speed significantly influences the area of the surface composite and the distribution of B4C particles. Higher rotational speed exhibits homogenous distribution of B4C particles, while lower rotational speed causes poor distribution of B4C particles in the surface composite. The effects of tool rotational speed on the grain size, microhardness, wear rate, worn surface and wear debris were reported.展开更多
This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including si...This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including silicon carbide(SiC),alumina(Al_(2)O_(3)),quartz(SiO_(2)),boron carbide(B_(4)C),titanium carbide(TiC),carbon fiber,hydroxyapatite(HA),in-situ formed phases,and hybrid reinforcements are summarized.AZ91 composite fabricating methods based on FSP are explained,including groove filling(grooving),drilled hole filling,sandwich method,stir casting followed by FSP,and formation of in-situ particles.The effects of introducing second-phase particles and FSP process parameters(e.g.,tool rotation rate,traverse speed,and the number of passes)on the microstructural modification,grain refinement,homogeneity in the distribution of particles,inhibition of grain growth,mechanical properties,strength–ductility trade-off,wear/tribological behavior,and corrosion resistance are discussed.Finally,useful suggestions for future work are proposed,including focusing on the superplasticity and superplastic forming,metal additive manufacturing processes based on friction stir engineering(such as additive friction stir deposition),direct FSP,stationary shoulder FSP,correlation of the dynamic recrystallization(DRX)grain size with the Zener–Hollomon parameter similar to hot deformation studies,process parameters(such as the particle volume fraction and external cooling),and common reinforcing phases such as zirconia(ZrO_(2))and carbon nanotubes(CNTs).展开更多
Because of the different conductivities between the primary phase (low electric conduc tivity) and the metal melt, electromagnetic force scarcely acts on the primary phase. Thus, an electromagnetic repulsive force ap...Because of the different conductivities between the primary phase (low electric conduc tivity) and the metal melt, electromagnetic force scarcely acts on the primary phase. Thus, an electromagnetic repulsive force applied by the metal melt exerts on the pri mary phase when the movement of the melt in the direction of electromagnetic force is limited. As a result, the repulsive force exerts on the primary phase to push them to move in the direction opposite to that of the electromagnetic force when the metal melt with primary phase solidifies under an electromagnetic force field. Based on this, a new method for production of in situ surface composite and gradient material by electromagnetic force is proposed. An in situ primary Si reinforced surface composite of Al-15wt%Si alloy and gradient material of Al-l9wt%Si alloy were produced by this method. The microhardness of the primary Si is HV1320. The reinforced phase size is in the range from 40μm to 100μm. The wear resistance of Al-Si alloy gradient material can be more greatly increased than that of their matrix material.展开更多
Friction stir processing(FSP)can be used to improve surface composites.In this study,a modified method of FSP called friction stir vibration processing(FSVP)was applied to develop a surface composite on AZ91 magnesium...Friction stir processing(FSP)can be used to improve surface composites.In this study,a modified method of FSP called friction stir vibration processing(FSVP)was applied to develop a surface composite on AZ91 magnesium alloy.In this technique,the workpiece is vibrated normal to the processing direction.The results illustrated that compared with the FSP method,the FSVP caused a better homogeneous distribution of SiC particles in the microstructure.The results also showed that matrix grains of friction stir vibration processed(FSV-processed)samples((26.43±2.00)μm)were finer than those of friction stir processed(FS-processed)specimens((39.43±2.00)μm).The results indicated that the ultimate tensile strength(UTS)of FSV-processed specimens(361.82 MPa)was higher than that of FS-processed specimens(324.97 MPa).The higher plastic strain in the material during FSVP,due to workpiece vibration,resulted in higher dynamic recrystallization,and consequently,finer grains were developed.The elongation and formability index of the FSV-processed specimen(16.88%and 6107.52 MPa·%,respectively)were higher than those of the FS-processed sample(15.24%and 4952.54 MPa·%,respectively).Moreover,the effects of FSVP were also found to intensify as the vibration frequency increased.展开更多
The effect of MoS2 lubricant particles on the microstructure, microhardness and tribological behavior of A413/SiCp surface composite, fabricated via friction stir processing (FSP), was studied. For this purpose, ...The effect of MoS2 lubricant particles on the microstructure, microhardness and tribological behavior of A413/SiCp surface composite, fabricated via friction stir processing (FSP), was studied. For this purpose, the FSP was carried out with tool rotational speed of 1600 r/min, tool travel speed of 25 mm/min and tool tilt angle of 3° through only a “single pass”. The optical and scanning electron microscopies, microhardness and reciprocating wear tests were used to characterize the samples. The results showed that the addition of MoS2 lubricant particles to A413/SiCp surface composite leads to the decrease of friction coefficient and mass loss. In fact, the generation of mechanically mixed layer (MML) containing MoS2 lubricant particles in A413/SiCp/MoS2p surface hybrid composite results in the reduction of metal-to-metal contact and subsequently leads to the improvement of tribological behavior.展开更多
The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as...The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.展开更多
Alumina (Al2O3) particles reinforced copper matrix surface composites were fabricated on the bronze substrate using the vacuum infiltration casting technique. Three cases were obtained in the vacuum infiltration cas...Alumina (Al2O3) particles reinforced copper matrix surface composites were fabricated on the bronze substrate using the vacuum infiltration casting technique. Three cases were obtained in the vacuum infiltration casting technique: no infiltration, partial infiltration and full infiltration (the thickness of preforms do not exceed 3.5mm). The reason of no infiltration is that the vacuum degree is not enough so that the force acting on the liquid metal is lower than the resistance due to the surface tension. Partial infiltration is because of somewhat lower vacuum degree and pouring temperature. Full desired infiltration is on account of suitable infiltration casting conditions, such as vacuum degree, pouring temperature, grain size and preheating temperature of the preform. The most important factor of affecting formation of surface composites is the vacuum degree, then pouring temperature and particle size. The infiltration mechanism was discussed on the bases of different processing conditions. The surface composite up to 3.5 mm in thickness with uniformly distributed Al2O3 particles could be fabricated via the vacuum infiltration casting technique.展开更多
[Objectives] The research aimed to optimize extraction process of Clerodendrum philippinum Schauer var. simplex Mlodenke total flavonoids( CPTF),and provide reference for its development and utilization. [Methods] Bas...[Objectives] The research aimed to optimize extraction process of Clerodendrum philippinum Schauer var. simplex Mlodenke total flavonoids( CPTF),and provide reference for its development and utilization. [Methods] Based on single-factor test,ethanol concentration,extraction temperature and extraction time were taken as independent variables,and total flavonoids yield was taken as dependent variable. The test was conducted according to central composite design principle. Multivariate linear regression and binomial equation fitting of the result were conducted,and extraction process of CPTF was optimized by using response surface methodology. [Results]The optimal extraction process of CPTF was as below: ethanol concentration 54. 76%,extraction temperature 83. 92℃,extraction time 102. 64 min,solid-liquid ratio 1:20,extraction for twice. [Conclusions] The extraction process of CPTF by central composite design-response surface methodology was simple and feasible,with reliable prediction result,which was suitable for industrial production.展开更多
The aim of present study is to analyze the influence of volume percentage(vol.%) of nano-sized particles(TiB_2: average size is 35 nm) on microstructure, mechanical and tribological behavior of 6061-T6 Al alloy surfac...The aim of present study is to analyze the influence of volume percentage(vol.%) of nano-sized particles(TiB_2: average size is 35 nm) on microstructure, mechanical and tribological behavior of 6061-T6 Al alloy surface nano composite prepared via Friction stir process(FSP). The microstructure of the fabricated surface nanocomposites is examined using optical microscopy(OM) and scanning electron microscope(SEM) for distribution of TiB_2 nano reinforcement particles, thickness of nano composite layer formed on the Aluminum alloy substrate and fracture features. The depth of surface nano composite layer is measured as 3683.82 m m along the cross section of stir zone of nano composite perpendicular to FSP. It was observed that increase in volume percentage of TiB_2 particles, the microhardness is increased up to132 Hv and it is greater than as-received Al alloy's microhardness(104 Hv). It is also observed that at 4volume percentage higher tensile properties exhibited as compared with the 2 and 8 vol. %. It is found that high wear resistance exhibited at 4 volume percentage as-compared with the 2 and 8 vol. %. The observed wear and mechanical properties are interrelated with microstructure, fractography and worn morphology.展开更多
The microstructural evolution characteristics of the thermomechanically affected zone (TMAZ) alloy during friction stir processing (FSP) of thixoformed (TF) AZ91D alloy were investigated. Simultaneously, a surfa...The microstructural evolution characteristics of the thermomechanically affected zone (TMAZ) alloy during friction stir processing (FSP) of thixoformed (TF) AZ91D alloy were investigated. Simultaneously, a surface composite layer reinforced by SiC particles (SiCps) was prepared on the alloy by FSP and the corresponding tribological properties were examined. The experimental results indicate that dynamic recrystallization and mechanical separation (including splitting and fracture of the primary grains) are the main mechanisms of grain refinement for the TMAZ. A composite surface reinforced by uniformly distributed SiCps was prepared on the alloy. Compared with the corresponding permanent mould casting alloy and the TF alloy without composite surface, the TF alloy with composite surface has the highest wear resistance and lowest friction coefficient.展开更多
3D evaluation method of cutting surface topography for C/Ph composites was established.The cutting surface was measured by Talyscan 150,using 3D non-contact measurement.Through the results of 2D and 3D roughness evalu...3D evaluation method of cutting surface topography for C/Ph composites was established.The cutting surface was measured by Talyscan 150,using 3D non-contact measurement.Through the results of 2D and 3D roughness evaluating for C/Ph composite and Duralumin,the 2D evaluation method of the cutting surface topography of C/Ph composite loses a lot of information,the characteristics of the surface topography of C/Ph composite can be comprehensively and authentically evaluated only by 3D evaluation method.Furthermore,3D amplitude and spatial parameters were adopted to evaluate the surface.The results show that: the topography of the C/Ph composite is anisotropic,there are more valleys in the machined surface of C/Ph than that of duralumin,and there are not obvious feeding textures for C/Ph,which indicates the machining mechanism is different from the metal.In conclusion,the topography of the C/Ph composite cutting surface is anisotropic;the cutting surface of C/Ph composite needs 3D evaluation method.展开更多
In order to choose the appropriate reference surface on the machined surface roughness of Si Cp/Al composites, the cutting experiments of Si Cp/Al composites were carried out, and the machined surface topography was m...In order to choose the appropriate reference surface on the machined surface roughness of Si Cp/Al composites, the cutting experiments of Si Cp/Al composites were carried out, and the machined surface topography was measured by OLS3000 Confocal laser scanning microscope. The 3D measured data of machined surface topography were analyzed by the area power spectrum density. The result shows that the texture of machined surface topography in milling of Si Cp/Al composites is almost isotropic. This is the reason that the values of Rq at different locations on the same machined surface are obviously different. Through the comparison of performance of different filtering methods, the robust least squares reference surface can be used to extract the surface roughness of SiC p/Al composites effectively.展开更多
Friction stir processing(FSP) was utilized to produce surface composites by incorporating nano-sized cerium oxide(CeO2) and silicon carbide(SiC) particles individually and in combined form into the Al5083 alloy ...Friction stir processing(FSP) was utilized to produce surface composites by incorporating nano-sized cerium oxide(CeO2) and silicon carbide(SiC) particles individually and in combined form into the Al5083 alloy matrix. The study signified the role of these reinforcements on microstructure and wear behavior of the resultant surface composite layers. The wear characteristics of the resultant mono and hybrid surface composite layers were investigated using a pin-on-disc wear tester at room temperature. The microstructural observations of FSPed regions and the worn out surfaces were performed by optical and scanning electron microscopy. Considerable grain refinement and uniform distribution of reinforcement particles were achieved inside the nugget zone. All the composite samples showed higher hardness and wear resistance compared to the base metal. Among the composite samples, the hybrid composite(Al5083/CeO2/SiC) revealed the highest wear resistance and the lowest friction coefficient, whereas the Al5083/SiC composite exhibited the highest hardness, i.e., 1.5 times as hard as that of the Al5083 base metal. The enhancement in wear behavior of the hybrid composites was attributed to the solid lubrication effect provided by CeO2 particles. The predominant wear mechanism was identified as severe adhesive in non-composite samples, which changed to abrasive wear and delamination in the presence of reinforcing particles.展开更多
基金supported by the National Basic Research Program of China(973 Program,2013CB933102)the National Natural Science Foundation of China(21273178,21573180,91545204)Xiamen-Zhuoyue Biomass Energy Co.Ltd~~
文摘Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.
基金financially supported by the National Natural Science Foundation of China (Nos. 20621401, 20834005,51073151)the Ministry of Science and Technology of China (No. 2009CB623604)
文摘The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via using mixed solvents with different evaporation rates. The second solvent, with a higher boiling point than that of the first solvent and much better solubility for PCBM than P3HT, is chosen to mix with the first solvent with a lower boiling point and good solubility for both PCBM and P3HT. The slow evaporation rate of the second solvent provides enough time for PCBM to diffuse upwards during the solvent evaporation. Thus, the weight ratio of PCBM and P3HT (mpcBM/mp3HT) at surface of the blend films was varied from ca. 0.1 to ca. 0.72, i.e., it increases about seven times by changing from single solvent to mixed solvents. Meanwhile, the mixed solvents were in favor to form P3HT naonofiber network and enhance phase separation of P3HT/PCBM blend films. As a result, the power conversion efficiency of the device from mixed solvents with slow evaporation process was about 1.5 times of the one from single solvents.
基金supported by the National Natural Science Foundation of China(No.21878197)the Natural Science Foundation of Jjiangsu Province(No.BK20180096)+2 种基金Jiangsu Higher Education Iinstitutions(No.18KJA530004)the Suzhou Municipal Science and Technology Bureau(No.SYG201810)the Post-Doctoral Science Foundation ofjangsu(2021K356C)。
文摘This work is aimed to study the effects of component size and solubility on the surface composition of spray dried(SD)uniform two-component particles fabricated by micro-fluidic spray dryer.Various precursor liquid consisting of small molecular of methionine(Met,33 g/L)or lysine(Lys,739 g/L)and large-sized silica(12 nm)were prepared by adjusting the mass ratio of components.X-ray energy disper-sive results showed that the respective enrichment degree(De)of Met and Lys on the surface of SD-M1S9 and-L1S9 prepared at 150 C were 182±9% and 125±14%.The De of hydrophobic Met for SD-M1S1 and-M9S1 were 46±9% and 4±2%,respectively,whereas relative hydrophilic Lys mainly distributed internal of the particle meanwhile the De of silica on the surface for SD-L1S1 and-L9S1 were 17±4%and 12±1%,respectively.Drying temperature(120 and 180℃)showed more apparent effect on the De of amino acid for the particles of less amino acid.The possible formation mechanism of surface composition and the surface composition impact on the wettability of particles were explored.These results provide new guidance for manufacturing functional SD powders with various components.
基金The National Programme on Global Change and Air-sea Interaction under contract No.GASI-02-SCS-CJ03China Geological Survey:Continental Shelf Drilling Program under contract No.GZH201100202China-Thailand Cooperation Project"Research on Vulnerability of Coastal Zones"
文摘Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and 159 samples were analyzed to determine detrital minerals. Authigenic minerals, including siderite, pyrite, and glauconite, are abundant whereas secondary minerals, such as chlorite and limonite, are distributed widely in the study area. Siderite has a maximum content of 19.98 g/kg and appears in three types from nearshore to continental shelf, showing the process of forming-maturity-oxidation. In this process, the Mn O content in siderite decreases, but FeOand Mg O content increase. Colorless or transparent siderite pellets are fresh grains generated within a short time and widely distributed throughout the region; high content appears in coastal area where river inputs are discharged. Translucent cemented double pellets appearing light yellow to red are mature grains; high content is observed in the central shelf. Red-brown opaque granular pellets are oxidized grains,which are concentrated in the eastern gulf. Pyrite is mostly distributed in the central continental shelf with an approximately north–south strip. Pyrite are mainly observed in foraminifera shell and distributed in clayey silt sediments, which is similar to that in the Yangtze River mouth and the Yellow Sea. The pyrite in the gulf is deduced from genetic types associated with sulfate reduction and organic matter decomposition. Majority of glauconite are granular with few laminar. Glauconite is concentrated in the northern and southern parts within the boundary of 9.5° to 10.5°N and is affected by river input diffusion. The distribution of glauconite is closely correlated with that of chlorite and plagioclase, indicating that glauconite is possibly derived from altered products of chlorite and plagioclase. The KO content of glauconite is low or absent, indicating its short formation time.
文摘A surface Ti-WC composite was fabricated on CP-Ti by surface friction stirring(SFS)using a pinless WC-Cotool at a processing window of 800−2500 r/min and 8−50 mm/min.At 1600 r/min-50 mm/min,a defect-free compositelayer with an average hardness of~HV 1170 is formed.The hardness was increased by WC and TiN reinforcingparticles,dissolved Co atoms in Ti,and the formation of ultrafine grains.WC particles were incorporated into the Tisubstrate owing to the intense frictional interaction/heating at the tool-plate interface(~1000℃),which led to strengthloss and wear of the tool.The Williamson-Hall analysis of the XRD peaks of the SFSed sample confirmed a significantlysmall crystallite size(~100 nm).Wear tests showed that the wear resistance of the composite structure was about 4.5times higher than that of the CP-Ti.Friction analysis revealed a significant reduction in average value and fluctuations ofthe friction coefficient.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61474085 and 61704130)the Science Research Plan in Shaanxi Province,China(Grant No.2016GY-085)+1 种基金the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences(Grant No.90109162905)the Fundamental Research Funds for the Central Universities,China(Grant No.61704130)
文摘Germanium-tin films with rather high Sn content (28.04% and 29.61%) are deposited directly on Si (100) and Si (111) substrates by magnetron sputtering. The mechanism of the effect of rapid thermal annealing on the Sn surface segregation of Ge1-xSnx films is investigated by x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The x-ray diffraction (XRD) is also performed to determine the crystallinities of the Ge1-xSnx films. The experimental results indicate that root mean square (RMS) values of the annealed samples are comparatively small and have no noticeable changes for the as-grown sample when annealing temperature is below 400℃. The diameter of the Sn three-dimensional (3D) island becomes larger than that of an as-grown sample when the annealing temperature is 700℃. In addition, the Sn surface composition decreases when annealing temperature ranges from 400℃ to 700℃. However, Sn bulk compositions in samples A and B are kept almost unchanged when the annealing temperature is below 600℃. The present investigation demonstrates that the crystallinity of Ge1-xSnx/Si (111) has no obvious advantage over that of Ge1-xSnx/Si (100) and the selection of Si (111) substrate is an effective method to improve the surface morphologies of Ge1-xSnx films. We also find that more severe Sn surface segregation occurs in the Ge1-xSnx/Si (111) sample during annealing than in the Ge1-xSnx/Si (100) sample.
文摘Surface metal matrix composites(MMCs)are a group of modern engineered materials where the surface of the material is modified by dispersing secondary phase in the form of particles or fibers and the core of the material experience no change in chemical composition and structure.The potential applications of the surface MMCs can be found in automotive,aerospace,biomedical and power industries.Recently,friction stir processing(FSP)technique has been gaining wide popularity in producing surface composites in solid state itself.Magnesium and its alloys being difficult to process metals also have been successfully processed by FSP to fabricate surface MMCs.The aim of the present paper is to provide a comprehensive summary of state-of-the-art in fabricating magnesium based composites by FSP.Influence of the secondary phase particles and grain refinement resulted from FSP on the properties of these composites is also discussed.
文摘An attempt was made to synthesize Cu/B4C surface composite using friction stir processing(FSP) and to analyze the influence of tool rotational speed on microstructure and sliding wear behavior of the composite. The tool rotational speed was varied from 800 to 1200 r/min in step of 200 r/min. The traverse speed, axial force, groove width and tool pin profile were kept constant. Optical microscopy and scanning electron microscopy were used to study the microstructure of the fabricated surface composites. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The results indicate that the tool rotational speed significantly influences the area of the surface composite and the distribution of B4C particles. Higher rotational speed exhibits homogenous distribution of B4C particles, while lower rotational speed causes poor distribution of B4C particles in the surface composite. The effects of tool rotational speed on the grain size, microhardness, wear rate, worn surface and wear debris were reported.
文摘This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including silicon carbide(SiC),alumina(Al_(2)O_(3)),quartz(SiO_(2)),boron carbide(B_(4)C),titanium carbide(TiC),carbon fiber,hydroxyapatite(HA),in-situ formed phases,and hybrid reinforcements are summarized.AZ91 composite fabricating methods based on FSP are explained,including groove filling(grooving),drilled hole filling,sandwich method,stir casting followed by FSP,and formation of in-situ particles.The effects of introducing second-phase particles and FSP process parameters(e.g.,tool rotation rate,traverse speed,and the number of passes)on the microstructural modification,grain refinement,homogeneity in the distribution of particles,inhibition of grain growth,mechanical properties,strength–ductility trade-off,wear/tribological behavior,and corrosion resistance are discussed.Finally,useful suggestions for future work are proposed,including focusing on the superplasticity and superplastic forming,metal additive manufacturing processes based on friction stir engineering(such as additive friction stir deposition),direct FSP,stationary shoulder FSP,correlation of the dynamic recrystallization(DRX)grain size with the Zener–Hollomon parameter similar to hot deformation studies,process parameters(such as the particle volume fraction and external cooling),and common reinforcing phases such as zirconia(ZrO_(2))and carbon nanotubes(CNTs).
基金supported by the National Natural Science Foundation of China(Grant No.50001008)the China Postdoctoral Science Foundation.
文摘Because of the different conductivities between the primary phase (low electric conduc tivity) and the metal melt, electromagnetic force scarcely acts on the primary phase. Thus, an electromagnetic repulsive force applied by the metal melt exerts on the pri mary phase when the movement of the melt in the direction of electromagnetic force is limited. As a result, the repulsive force exerts on the primary phase to push them to move in the direction opposite to that of the electromagnetic force when the metal melt with primary phase solidifies under an electromagnetic force field. Based on this, a new method for production of in situ surface composite and gradient material by electromagnetic force is proposed. An in situ primary Si reinforced surface composite of Al-15wt%Si alloy and gradient material of Al-l9wt%Si alloy were produced by this method. The microhardness of the primary Si is HV1320. The reinforced phase size is in the range from 40μm to 100μm. The wear resistance of Al-Si alloy gradient material can be more greatly increased than that of their matrix material.
基金the Amirkabir University of Technology(AUT)Sharif University of Technologythe National Elites Foundation of Iran for their support during this research。
文摘Friction stir processing(FSP)can be used to improve surface composites.In this study,a modified method of FSP called friction stir vibration processing(FSVP)was applied to develop a surface composite on AZ91 magnesium alloy.In this technique,the workpiece is vibrated normal to the processing direction.The results illustrated that compared with the FSP method,the FSVP caused a better homogeneous distribution of SiC particles in the microstructure.The results also showed that matrix grains of friction stir vibration processed(FSV-processed)samples((26.43±2.00)μm)were finer than those of friction stir processed(FS-processed)specimens((39.43±2.00)μm).The results indicated that the ultimate tensile strength(UTS)of FSV-processed specimens(361.82 MPa)was higher than that of FS-processed specimens(324.97 MPa).The higher plastic strain in the material during FSVP,due to workpiece vibration,resulted in higher dynamic recrystallization,and consequently,finer grains were developed.The elongation and formability index of the FSV-processed specimen(16.88%and 6107.52 MPa·%,respectively)were higher than those of the FS-processed sample(15.24%and 4952.54 MPa·%,respectively).Moreover,the effects of FSVP were also found to intensify as the vibration frequency increased.
文摘The effect of MoS2 lubricant particles on the microstructure, microhardness and tribological behavior of A413/SiCp surface composite, fabricated via friction stir processing (FSP), was studied. For this purpose, the FSP was carried out with tool rotational speed of 1600 r/min, tool travel speed of 25 mm/min and tool tilt angle of 3° through only a “single pass”. The optical and scanning electron microscopies, microhardness and reciprocating wear tests were used to characterize the samples. The results showed that the addition of MoS2 lubricant particles to A413/SiCp surface composite leads to the decrease of friction coefficient and mass loss. In fact, the generation of mechanically mixed layer (MML) containing MoS2 lubricant particles in A413/SiCp/MoS2p surface hybrid composite results in the reduction of metal-to-metal contact and subsequently leads to the improvement of tribological behavior.
基金Funded by"Xi-Bu-Zhi-Guang" Foundation of Chinese Academy of Sciences(No.XBZG-2007-5)Gansu Natural Science Foundation of China(No.0806RJYA004)Outstanding Youngth of Lanzhou University of Technology (No.Q200910)
文摘The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.
基金This work was financially supported by the National Natural Science Foundation of Gansu Province (No.ZS021-A25-024-C), theChun-Hui Plan of the Ministry of Education of China (Z2004-1-62013) and the Young Teacher Startup Foundation Project of Lanz-hou University of Technology
文摘Alumina (Al2O3) particles reinforced copper matrix surface composites were fabricated on the bronze substrate using the vacuum infiltration casting technique. Three cases were obtained in the vacuum infiltration casting technique: no infiltration, partial infiltration and full infiltration (the thickness of preforms do not exceed 3.5mm). The reason of no infiltration is that the vacuum degree is not enough so that the force acting on the liquid metal is lower than the resistance due to the surface tension. Partial infiltration is because of somewhat lower vacuum degree and pouring temperature. Full desired infiltration is on account of suitable infiltration casting conditions, such as vacuum degree, pouring temperature, grain size and preheating temperature of the preform. The most important factor of affecting formation of surface composites is the vacuum degree, then pouring temperature and particle size. The infiltration mechanism was discussed on the bases of different processing conditions. The surface composite up to 3.5 mm in thickness with uniformly distributed Al2O3 particles could be fabricated via the vacuum infiltration casting technique.
基金Supported by Special Item for Guangxi Bagui Scholars(Guicaijiaohan [2017]143)
文摘[Objectives] The research aimed to optimize extraction process of Clerodendrum philippinum Schauer var. simplex Mlodenke total flavonoids( CPTF),and provide reference for its development and utilization. [Methods] Based on single-factor test,ethanol concentration,extraction temperature and extraction time were taken as independent variables,and total flavonoids yield was taken as dependent variable. The test was conducted according to central composite design principle. Multivariate linear regression and binomial equation fitting of the result were conducted,and extraction process of CPTF was optimized by using response surface methodology. [Results]The optimal extraction process of CPTF was as below: ethanol concentration 54. 76%,extraction temperature 83. 92℃,extraction time 102. 64 min,solid-liquid ratio 1:20,extraction for twice. [Conclusions] The extraction process of CPTF by central composite design-response surface methodology was simple and feasible,with reliable prediction result,which was suitable for industrial production.
文摘The aim of present study is to analyze the influence of volume percentage(vol.%) of nano-sized particles(TiB_2: average size is 35 nm) on microstructure, mechanical and tribological behavior of 6061-T6 Al alloy surface nano composite prepared via Friction stir process(FSP). The microstructure of the fabricated surface nanocomposites is examined using optical microscopy(OM) and scanning electron microscope(SEM) for distribution of TiB_2 nano reinforcement particles, thickness of nano composite layer formed on the Aluminum alloy substrate and fracture features. The depth of surface nano composite layer is measured as 3683.82 m m along the cross section of stir zone of nano composite perpendicular to FSP. It was observed that increase in volume percentage of TiB_2 particles, the microhardness is increased up to132 Hv and it is greater than as-received Al alloy's microhardness(104 Hv). It is also observed that at 4volume percentage higher tensile properties exhibited as compared with the 2 and 8 vol. %. It is found that high wear resistance exhibited at 4 volume percentage as-compared with the 2 and 8 vol. %. The observed wear and mechanical properties are interrelated with microstructure, fractography and worn morphology.
基金Funded by the State Key Development Program for Basic Research of China (2007CB613706)the Natural Science Foundation of Gansu Province(3ZS042-B25-003)the Development Program for Outstanding Young Teachers in Lanzhou university of Technology (SKL03004)
文摘The microstructural evolution characteristics of the thermomechanically affected zone (TMAZ) alloy during friction stir processing (FSP) of thixoformed (TF) AZ91D alloy were investigated. Simultaneously, a surface composite layer reinforced by SiC particles (SiCps) was prepared on the alloy by FSP and the corresponding tribological properties were examined. The experimental results indicate that dynamic recrystallization and mechanical separation (including splitting and fracture of the primary grains) are the main mechanisms of grain refinement for the TMAZ. A composite surface reinforced by uniformly distributed SiCps was prepared on the alloy. Compared with the corresponding permanent mould casting alloy and the TF alloy without composite surface, the TF alloy with composite surface has the highest wear resistance and lowest friction coefficient.
基金Funded by the National Natural Science Foundation of China(No.50875036)
文摘3D evaluation method of cutting surface topography for C/Ph composites was established.The cutting surface was measured by Talyscan 150,using 3D non-contact measurement.Through the results of 2D and 3D roughness evaluating for C/Ph composite and Duralumin,the 2D evaluation method of the cutting surface topography of C/Ph composite loses a lot of information,the characteristics of the surface topography of C/Ph composite can be comprehensively and authentically evaluated only by 3D evaluation method.Furthermore,3D amplitude and spatial parameters were adopted to evaluate the surface.The results show that: the topography of the C/Ph composite is anisotropic,there are more valleys in the machined surface of C/Ph than that of duralumin,and there are not obvious feeding textures for C/Ph,which indicates the machining mechanism is different from the metal.In conclusion,the topography of the C/Ph composite cutting surface is anisotropic;the cutting surface of C/Ph composite needs 3D evaluation method.
基金Projects(51305284,61203208) supported by the National Natural Science Foundation of China
文摘In order to choose the appropriate reference surface on the machined surface roughness of Si Cp/Al composites, the cutting experiments of Si Cp/Al composites were carried out, and the machined surface topography was measured by OLS3000 Confocal laser scanning microscope. The 3D measured data of machined surface topography were analyzed by the area power spectrum density. The result shows that the texture of machined surface topography in milling of Si Cp/Al composites is almost isotropic. This is the reason that the values of Rq at different locations on the same machined surface are obviously different. Through the comparison of performance of different filtering methods, the robust least squares reference surface can be used to extract the surface roughness of SiC p/Al composites effectively.
基金financial support provided by Shahid Chamran University of Ahvaz, Iran
文摘Friction stir processing(FSP) was utilized to produce surface composites by incorporating nano-sized cerium oxide(CeO2) and silicon carbide(SiC) particles individually and in combined form into the Al5083 alloy matrix. The study signified the role of these reinforcements on microstructure and wear behavior of the resultant surface composite layers. The wear characteristics of the resultant mono and hybrid surface composite layers were investigated using a pin-on-disc wear tester at room temperature. The microstructural observations of FSPed regions and the worn out surfaces were performed by optical and scanning electron microscopy. Considerable grain refinement and uniform distribution of reinforcement particles were achieved inside the nugget zone. All the composite samples showed higher hardness and wear resistance compared to the base metal. Among the composite samples, the hybrid composite(Al5083/CeO2/SiC) revealed the highest wear resistance and the lowest friction coefficient, whereas the Al5083/SiC composite exhibited the highest hardness, i.e., 1.5 times as hard as that of the Al5083 base metal. The enhancement in wear behavior of the hybrid composites was attributed to the solid lubrication effect provided by CeO2 particles. The predominant wear mechanism was identified as severe adhesive in non-composite samples, which changed to abrasive wear and delamination in the presence of reinforcing particles.