The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting t...The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting two simulations that include and exclude the OSC in the calculation of the ice-ocean stress(IOS), using an eddy-permitting coupled ocean-sea ice global model. By comparing the results of these two experiments, significant increases of 5%, 27%, and 24%, were found in the subpolar Southern Ocean when excluding the OSC in the IOS calculation for the ocean surface stress,upwelling, and downwelling, respectively. Excluding the OSC in the IOS calculation also visibly strengthens the total mechanical energy input to the OSC by about 16%, and increases the eddy kinetic energy and mean kinetic energy by about38% and 12%, respectively. Moreover, the response of the meridional overturning circulation in the Southern Ocean yields respective increases of about 16% and 15% for the upper and lower branches;and the subpolar gyres are also found to considerably intensify, by about 12%, 11%, and 11% in the Weddell Gyre, the Ross Gyre, and the Australian-Antarctic Gyre, respectively. The strengthened ocean circulations and Ekman pumping result in a warmer sea surface temperature(SST), and hence an incremental surface heat loss. The increased sea ice drift and warm SST lead to an expansion of the sea ice area and a reduction of sea ice volume. These results emphasize the importance of OSCs in the air-sea-ice interactions on the global ocean circulations and the mass balance of Antarctic ice shelves, and this component may become more significant as the rapid change of Antarctic sea ice.展开更多
Forecasting of ocean currents is critical for both marine meteorological research and ocean engineering and construction.Timely and accurate forecasting of coastal current velocities offers a scientific foundation and...Forecasting of ocean currents is critical for both marine meteorological research and ocean engineering and construction.Timely and accurate forecasting of coastal current velocities offers a scientific foundation and decision support for multiple practices such as search and rescue,disaster avoidance and remediation,and offshore construction.This research established a framework to generate short-term surface current forecasts based on ensemble machine learning trained on high frequency radar observation.Results indicate that an ensemble algorithm that used random forests to filter forecasting features by weighting them,and then used the AdaBoost method to forecast can significantly reduce the model training time,while ensuring the model forecasting effectiveness,with great economic benefits.Model accuracy is a function of surface current variability and the forecasting horizon.In order to improve the forecasting capability and accuracy of the model,the model structure of the ensemble algorithm was optimized,and the random forest algorithm was used to dynamically select model features.The results show that the error variation of the optimized surface current forecasting model has a more regular error variation,and the importance of the features varies with the forecasting time-step.At ten-step ahead forecasting horizon the model reported root mean square error,mean absolute error,and correlation coefficient by 2.84 cm/s,2.02 cm/s,and 0.96,respectively.The model error is affected by factors such as topography,boundaries,and geometric accuracy of the observation system.This paper demonstrates the potential of ensemble-based machine learning algorithm to improve forecasting of ocean currents.展开更多
The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean curren...The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean currents derived from 323 Argos drifters deployed by Chinese institutions and world ocean circulation experiment from 1979 to 2003. The results show that the Kuroshio surface path adapts well to the western boundary topography and exhibits six great turnings. The branching occurs frequently near anticyclonic turnings rather than near cyclonic ones. In the Luzon Strait, the surface water intrusion into the South China Sea occurs only in fall and winter. The Kuroshio surface path east of Taiwan, China appears nearly as straight lines in summer, fall, and winter, when anticyclonic eddies coexist on its right side; while the path may cyclonically turning in spring when no eddy exists. The Kuroshio intrusion northeast of Taiwan often occurs in fall and winter, but not in summer. The running direction, width and velocity of the middle segment of the Kuroshio surface currents in the East China Sea vary seasonally. The northward intrusion of the Kuroshio surface water southwest of Kyushu occurs in spring and fall, but not in summer. The northmost position of the Kuroshio surface path southwest of Kyushu occurs in fall, but never goes beyond 31 °N. The northward surface current east of the Ryukyu Islands exists only along Okinawa-Amami Islands from spring to fall. In particular, it appears as an arm of an anti- cyclonic eddy in fall.展开更多
The ocean surface currents are reconstructed from the satellite remote sensing data containing altimeter-derived sea surface height and QuikSCAT satellite-derived wind data. Based on the method proposed by Lagerloef, ...The ocean surface currents are reconstructed from the satellite remote sensing data containing altimeter-derived sea surface height and QuikSCAT satellite-derived wind data. Based on the method proposed by Lagerloef, a global weekly 0.5°×0.5°ocean surface current product was obtained over the period 2000 - 2008 by combining the geostrophic currents estimated from sea surface height with Ekman current estimated from the wind stress. Particularly, weight functions were introduced when calculating the Ekman currents to eliminate the discontinuity near 25°S and 25°N. These satellite-derived currents have been compared with TAO current meter and the SCUD product, respectively. The comparison showed that satellite-derived currents not only could capture the characteristics of ocean surface currents but also had high accuracy and reliability. The result showed that this innovatory method was effective.展开更多
A dataset of surface current vectors with error estimate from 1999 to 2007 is derived from the trajectories of the Array for Real-time Geostrophic Oceanography (Argo) drifting on surface over the global ocean. The err...A dataset of surface current vectors with error estimate from 1999 to 2007 is derived from the trajectories of the Array for Real-time Geostrophic Oceanography (Argo) drifting on surface over the global ocean. The error of the estimated surface currents is about 4.7 cm s-1 which is equivalent to the accuracy of the currents determined from the surface drifters. Geographically, the Argo-derived surface currents can fill many gaps left by the Global Drifter Program due to the greater number of floats, and can provide a complementary in situ observational system for monitoring global ocean surface currents. The surface currents from the Argo floats are compared with the surface drifter-derived currents and the Tropical Atmosphere Ocean program (TAO) measurements. The comparisons show good agreement for both the current amplitude and the direction of surface currents. Results indicate the feasibility of obtaining ocean surface currents from the Argo array and of combining the surface currents from Argo and the ocean surface drifters for in situ mapping of the global surface currents. The authors also make the dataset available to users of interest for many types of applications.展开更多
Surface currents measured by high frequency (HF) radar arrays are assimilated into a regional ocean model over Qingdao coastal waters based on Kalman filter method. A series of numerical experiments are per- formed ...Surface currents measured by high frequency (HF) radar arrays are assimilated into a regional ocean model over Qingdao coastal waters based on Kalman filter method. A series of numerical experiments are per- formed to evaluate the performance of the data assimilation schemes. In order to optimize the analysis pro- cedure in the traditional ensemble Kalman filter (ENKF), a different analysis scheme called quasiensemble Kaman filter (QENKF) is proposed. The comparisons between the ENKF and the QENKF suggest that both them can improve the simulated error and the spatial structure. The estimations of the background error covariance (BEC) are also assessed by comparing three different methods: Monte Carlo method; Canadian quick covariance (CQC) method and data uncertainty engine (DUE) method. A significant reduction of the root-mean-square (RMS) errors between model results and the observations shows that the CQC method is able to better reproduce the error statistics for this coastal ocean model and the corresponding external forcing. In addition, the sensibility of the data assimilation system to the ensemble size is also analyzed by means of different scales of the ensemble size used in the experiments. It is found that given the balance of the computational cost and the forecasting accuracy, the ensemble size of 50 will be an appropriate choice in the Qingdao coastal waters.展开更多
A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model...A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs) and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC), was developed based on a terrain-following vertical (sigma) coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tideand wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.展开更多
HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arriva...HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arrival) determination of sea echoes. The algorithm of ESPRIT is briefly introduced first. Then discussions are made on the technique for application in the OSMAR2000 framework. Numerical simulation results are presented to demonstrate the feasibility of radial current mapping based on this method. The algorithm manifests significant performance and computational advantages compared with that of MUSIC. Data acquired by OSMAR2000 are processed to give radial current map and the synthesized vector currents are compared with the in-situ measurement with traditional means. The results show the validity of ESPRIT application in DOA determination for broad-beam radar. Key words HF ground wave radar - sea surface current - ESPRIT - MUSIC CLC number TN 911.72 - TN 958.95 Foundation item: Supported by the National Natural Science Foundation of China (60201003) and the National High Technology Development 863 Program of China (863-818-01-02)Biography: Liu Dan-hong (1976-), female, Master candidate, research direction: radar signal processing.展开更多
The incorrect surface current may be obtained in the vicinity of the resonant frequencies when the method of moments is used to solve either the electric or magnetic field surface integral equation. An effective met...The incorrect surface current may be obtained in the vicinity of the resonant frequencies when the method of moments is used to solve either the electric or magnetic field surface integral equation. An effective method is presented to determine the correct surface current, i.e., the correct surface current, i.e., the correct surface current is composed of the non-resonant mode current and the normalized resonant mode current multiplied by an unknown complex factor. The unknown complex factor can be obtained by employing the condition that the total field inside the conducting closed body must be zero at specified interior points. A numerical example is given for an infinitely long and perfectly conducting circular cylinder at the interior resonance, and the calculated surface currents are in good agreement with the analytical ones. The validity and accuracy of the presented method is thus verified.展开更多
The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a ...The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.展开更多
We propose a bulk negative refractive index (NRI) metamaterial composed of periodic array of tightly coupled metallic cross-pairs printed oR the six sides of a cube for applications of superlenses. The structural ch...We propose a bulk negative refractive index (NRI) metamaterial composed of periodic array of tightly coupled metallic cross-pairs printed oR the six sides of a cube for applications of superlenses. The structural characteristics of the three-dimensional (3D) metamaterial consist in the high symmetry and the superposition of metallic cross-pairs, which can increase the magnetic inductive coupling between adjacent cross-pairs and realize a broadband and isotropic NRI. The proposed 3D structure is simulated using the CS~ Microwave Studio 2006 to verify the design validity. The simulation results show that the proposed structure can not only realize simultaneously an electric and magnetic response to an incident electromagnetic (EM) wave, but also exhibit a broadband NRI whose relative bandwidth can reach up to 56.7%. In addition, the NRI band is insensitive to tile polarization and the incident angle of the incident EM wave. Therefore, the proposed metamaterial is a good candidate material as three-dimensional broadband isotropic NRI metamaterial.展开更多
By incorporating the wave-induced Coriolis-Stokes forcing into the classical Ekman layer,the wave-modifi ed ocean surface currents in the northwestern Pacifi c Ocean were estimated.Thus,the ocean surface currents are ...By incorporating the wave-induced Coriolis-Stokes forcing into the classical Ekman layer,the wave-modifi ed ocean surface currents in the northwestern Pacifi c Ocean were estimated.Thus,the ocean surface currents are the combination of classical Ekman current from the cross-calibrated multi-platform(CCMP)wind speed,geostrophic current from the mean absolute dynamic topography(MADT),and wave-induced current based on the European Centre for Medium-Range Weather Forecasts(ECMWF)Interim Re-Analysis(ERA-Interim)surface wave datasets.Weight functions are introduced in the Ekman current formulation as well.Comparisons with in-situ data from Lagrangian drifters in the study area and Kuroshio Extension Observatory(KEO)observations at 32.3°N,144.6°E,and 15-m depth indicate that wave-modifi ed ocean surface currents provide accurate time means of zonal and meridional currents in the northwestern Pacifi c Ocean.Result shows that the wave-modifi ed currents are quite consistent with the Lagrangian drifter observations for the period 1993-2017 in the deep ocean.The correlation(root mean square error,RMSE)is 0.96(1.45 cm/s)for the zonal component and 0.90(1.07 cm/s)for the meridional component.However,wave-modifi ed currents underestimate the Lagrangian drifter velocity in strong current and some off shore regions,especially in the regions along the Japan coast and the southeastern Mindanao.What’s more,the wave-modifi ed currents overestimate the pure Eulerian KEO current which does not consider the impact of waves,and the zonal(meridional)correlation and RMSE are 0.95(0.90)and 11.25 cm/s(12.05 cm/s)respectively.These comparisons demonstrate that our wave-modifi ed ocean surface currents have high precision and can describe the real-world ocean in the northwestern Pacifi c Ocean accurately and intuitively,which can provide important routes to calculate ocean surface currents on large spatial scales.展开更多
Values for Doppler center frequency are calculated from the echo signal at the satellite using the Doppler centroid method and so include the predicted Doppler frequency caused by the relative motion of the satellite ...Values for Doppler center frequency are calculated from the echo signal at the satellite using the Doppler centroid method and so include the predicted Doppler frequency caused by the relative motion of the satellite and the Earth,which is the main component of Doppler center frequency and must be removed to obtain the Doppler frequency anomaly for ocean current measurement.In this paper,a new Doppler frequency anomaly algorithm was proposed when measuring surface currents with synthetic aperture radar(SAR).The key of the proposed algorithm involved mean filtering method in the range direction and linear fitting in the azimuth direction to remove the radial and the azimuthal component of predicted Doppler frequency from the Doppler center frequency,respectively.The basis is that the theoretical Doppler center frequency model of SAR exhibits an approximately linear characteristic in both the range direction and in the azimuth direction.With the help of the new algorithm for predicted Doppler frequency removal,the estimation error of Doppler frequency anomaly can be reduced by avoiding employing the theoretical antenna pattern and imperfect satellite attitude parameters in the conventional Doppler frequency method.SAR measurement results demonstrated that,compared to the conventional Doppler frequency with/without error correction method,the proposed algorithm allows for a pronounced improvement in the current measuring accuracy in comparison with the global ocean multi-observation(MOB)products.In addition,the eff ectiveness and robustness of the proposed Doppler algorithm has been demonstrated by its application in the high velocity current in the Kuroshio region.展开更多
Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability o...Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability of ocean currents also makes the prediction methods based on time series data challenging.The deep network model can automatically learn and extract complex features hidden in large amount of complex data,so it is a promising method for high quality prediction of ocean currents.In this paper,we propose a spatiotemporal coupled attention deep network model STCANet that can extract abundant temporal and spatial coupling information on the behavior characteristics of ocean currents for improving the prediction accuracy.Firstly,Spatial Module is designed and implemented to extract the spatiotemporal coupling characteristics of ocean currents,and meanwhile the spatial correlations and dependencies among adjacent sea areas are obtained through Spatial Channel Attention Module(SCAM).Secondly,we use the GatedRecurrent-Unit(GRU)to extract temporal relationships of ocean currents,and design and implement the nearest neighbor time attention module to extract the interdependences of ocean currents between adjacent times,which can further improve the accuracy of ocean current prediction.Finally,a series of comparative experiments on the MediSea_Dataset and EastSea_Dataset showed that the prediction quality of our model greatly outperforms those of other benchmark models such as History Average(HA),Autoregressive Integrated Moving Average Model(ARIMA),Long Short-term Memory(LSTM),Gate Recurrent Unit(GRU)and CNN_GRU.展开更多
This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down contin...This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down continuous wave linear frequency modulated signals that allow for the offset of two one-dimensional range images of the sea surface that respectively correspond to the upward linear frequency modulated(LFM)signal and the downward LFM signal.Owing to the Doppler frequency shift from the sea surface,a range offset,which is proportional to the radial velocity of the sea surface,occurs between the upward and downward LFM signals.By using the least-squares linear fitting method in the transformed domain,the range offset can be measured and the current velocity can be retrieved.Finally,we verify the accuracy of current measurement with simulation results.展开更多
A series of NOAA AVHRR data over the East China Sea were collected from the ground station of the Second Institute of Oceanography, Hangzhou, China. Three methods, including a functional analytic method (FAM), a maxim...A series of NOAA AVHRR data over the East China Sea were collected from the ground station of the Second Institute of Oceanography, Hangzhou, China. Three methods, including a functional analytic method (FAM), a maximum cross correlation (MCC)'method and a correlation relaxation (C - R) method, are applied to derive the sea surface current field from sequential satellite images in the area of the East China Sea. Several preprocessing steps, such as geometric correction, SST determination, image projection, image navigation and grey value normalization as well as land and cloud mask are performed. The results from the three methods reflect the general current system in this area reasonably.展开更多
GPS-based surface drifters were used to investigate the surface currents in Daya Bay and along the eastern Guangdong coast in China.Surface current vectors were measured based on the GPS location and corresponding tim...GPS-based surface drifters were used to investigate the surface currents in Daya Bay and along the eastern Guangdong coast in China.Surface current vectors were measured based on the GPS location and corresponding time information sent by drifters through the mobile phone network.The analysis of data from 120 drifters,deployed in late spring 2018 in the case-study region,shows that the drifters are generally capable of capturing the surface(tidal and residual)currents.The drifter trajectories suggest an anticlockwise surface current inside Daya Bay and a north-eastward current along the eastern Guangdong coast,where the coastal current along the eastern Guangdong coast is faster than that inside Daya Bay.The surface currents in the investigated region follow an irregular semidiurnal cycle due to the influence of the tidal current,while the currents inside Daya Bay are strongly affected by the topography.According to the harmonic analysis,an irregular semidiurnal type of tidal current is evident at a study grid inside Daya Bay,with an Eulerian residual current speed of 9.0 cm/s and a direction of 276°.The Lagrangian residual current outside Daya Bay moves north-eastward with a mean speed of 22 cm/s along the eastern Guangdong coast,while the current inside Daya Bay moves northward to the bay head with a mean speed of about 8.0 cm/s,which agrees well with the one reported in other literatures.展开更多
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface,a fractal sea surface wave–current model is derived,based on the mechanism of wave–current interactions.The numerical r...To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface,a fractal sea surface wave–current model is derived,based on the mechanism of wave–current interactions.The numerical results show the effect of the ocean current on the wave.Wave amplitude decreases,wavelength and kurtosis of wave height increase,spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave.By comparison,wave amplitude increases,wavelength and kurtosis of wave height decrease,spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave.The wave–current interaction effect of the ocean current is much stronger than that of the nonlinear wave–wave interaction.The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface.The effect of the current on skewness of the probability distribution function is negligible.Therefore,the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal.展开更多
Ocean surface currents play a key role in the earth’s climate.They affect virtually all processes occurring in the ocean and can also directly affect many important socio-economic activities.Himawari-8 meteorological...Ocean surface currents play a key role in the earth’s climate.They affect virtually all processes occurring in the ocean and can also directly affect many important socio-economic activities.Himawari-8 meteorological satellite has an international advanced geostationary orbit imager sensor,AHI,with high time resolution and spatial coverage,Himawari-8 can be used to observe the subtle changes in marine environments.In this study,we used Himawari-8 data received from the Joint Receiving Station for Satellite Remote Sensing of Xiamen University to retrieve coastal currents in Hangzhou Bay.Particularly,the Maximum Correlation Coefficient(MCC)and the Generalized Hough Transform(GHT)methods were used to retrieve them respectively.The retrieved sea surface currents are analyzed and verified by the numerical model data of the Taiwan Strait current forecasting system(TFOR).The results show that(1)the Himawari-8 satellite data can be used to effectively estimate the ocean current;(2)The results of the two methods are in agreement with each other,and the error in the current measured using the GHT method is smaller in the Yangtze estuary and offshore areas,where the turbidity characteristic front is stronger.展开更多
Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of ...Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.展开更多
基金supported by the Independent Research Foundation of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant No. SML2021SP306)National Natural Science Foundation of China (Grant Nos. 41941007, 41806216, 41876220, and 62177028)+2 种基金Natural Science Foundation of Jiangsu Province (Grant No. BK20211015)China Postdoctoral Science Foundation (Grant Nos. 2019T120379 and 2018M630499)the Talent start-up fund of Nanjing Xiaozhuang University (Grant No. 4172111)。
文摘The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting two simulations that include and exclude the OSC in the calculation of the ice-ocean stress(IOS), using an eddy-permitting coupled ocean-sea ice global model. By comparing the results of these two experiments, significant increases of 5%, 27%, and 24%, were found in the subpolar Southern Ocean when excluding the OSC in the IOS calculation for the ocean surface stress,upwelling, and downwelling, respectively. Excluding the OSC in the IOS calculation also visibly strengthens the total mechanical energy input to the OSC by about 16%, and increases the eddy kinetic energy and mean kinetic energy by about38% and 12%, respectively. Moreover, the response of the meridional overturning circulation in the Southern Ocean yields respective increases of about 16% and 15% for the upper and lower branches;and the subpolar gyres are also found to considerably intensify, by about 12%, 11%, and 11% in the Weddell Gyre, the Ross Gyre, and the Australian-Antarctic Gyre, respectively. The strengthened ocean circulations and Ekman pumping result in a warmer sea surface temperature(SST), and hence an incremental surface heat loss. The increased sea ice drift and warm SST lead to an expansion of the sea ice area and a reduction of sea ice volume. These results emphasize the importance of OSCs in the air-sea-ice interactions on the global ocean circulations and the mass balance of Antarctic ice shelves, and this component may become more significant as the rapid change of Antarctic sea ice.
基金The fund from Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2020SP009the National Basic Research and Development Program of China under contract Nos 2022YFF0802000 and 2022YFF0802004+3 种基金the“Renowned Overseas Professors”Project of Guangdong Provincial Department of Science and Technology under contract No.76170-52910004the Belt and Road Special Foundation of the National Key Laboratory of Water Disaster Prevention under contract No.2022491711the National Natural Science Foundation of China under contract No.51909290the Key Research and Development Program of Guangdong Province under contract No.2020B1111020003.
文摘Forecasting of ocean currents is critical for both marine meteorological research and ocean engineering and construction.Timely and accurate forecasting of coastal current velocities offers a scientific foundation and decision support for multiple practices such as search and rescue,disaster avoidance and remediation,and offshore construction.This research established a framework to generate short-term surface current forecasts based on ensemble machine learning trained on high frequency radar observation.Results indicate that an ensemble algorithm that used random forests to filter forecasting features by weighting them,and then used the AdaBoost method to forecast can significantly reduce the model training time,while ensuring the model forecasting effectiveness,with great economic benefits.Model accuracy is a function of surface current variability and the forecasting horizon.In order to improve the forecasting capability and accuracy of the model,the model structure of the ensemble algorithm was optimized,and the random forest algorithm was used to dynamically select model features.The results show that the error variation of the optimized surface current forecasting model has a more regular error variation,and the importance of the features varies with the forecasting time-step.At ten-step ahead forecasting horizon the model reported root mean square error,mean absolute error,and correlation coefficient by 2.84 cm/s,2.02 cm/s,and 0.96,respectively.The model error is affected by factors such as topography,boundaries,and geometric accuracy of the observation system.This paper demonstrates the potential of ensemble-based machine learning algorithm to improve forecasting of ocean currents.
基金The National Natural Science Foundations of China under contract Nos40406009,40333030and40706013
文摘The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean currents derived from 323 Argos drifters deployed by Chinese institutions and world ocean circulation experiment from 1979 to 2003. The results show that the Kuroshio surface path adapts well to the western boundary topography and exhibits six great turnings. The branching occurs frequently near anticyclonic turnings rather than near cyclonic ones. In the Luzon Strait, the surface water intrusion into the South China Sea occurs only in fall and winter. The Kuroshio surface path east of Taiwan, China appears nearly as straight lines in summer, fall, and winter, when anticyclonic eddies coexist on its right side; while the path may cyclonically turning in spring when no eddy exists. The Kuroshio intrusion northeast of Taiwan often occurs in fall and winter, but not in summer. The running direction, width and velocity of the middle segment of the Kuroshio surface currents in the East China Sea vary seasonally. The northward intrusion of the Kuroshio surface water southwest of Kyushu occurs in spring and fall, but not in summer. The northmost position of the Kuroshio surface path southwest of Kyushu occurs in fall, but never goes beyond 31 °N. The northward surface current east of the Ryukyu Islands exists only along Okinawa-Amami Islands from spring to fall. In particular, it appears as an arm of an anti- cyclonic eddy in fall.
基金supported by the National Natural Science Foundation of China(No.41306010,41276088 and 41206002)
文摘The ocean surface currents are reconstructed from the satellite remote sensing data containing altimeter-derived sea surface height and QuikSCAT satellite-derived wind data. Based on the method proposed by Lagerloef, a global weekly 0.5°×0.5°ocean surface current product was obtained over the period 2000 - 2008 by combining the geostrophic currents estimated from sea surface height with Ekman current estimated from the wind stress. Particularly, weight functions were introduced when calculating the Ekman currents to eliminate the discontinuity near 25°S and 25°N. These satellite-derived currents have been compared with TAO current meter and the SCUD product, respectively. The comparison showed that satellite-derived currents not only could capture the characteristics of ocean surface currents but also had high accuracy and reliability. The result showed that this innovatory method was effective.
基金supported by Knowledge Innovation Program of Chinese Academy of Sciences (Grant Nos. KZCX2-YW-202 and KZCX1-YW-12-03)National Basic Research Program of China (Grant No. 2006CB403600)National Natural Science Foundation of China (Grant Nos. 40221503 and 40776011)
文摘A dataset of surface current vectors with error estimate from 1999 to 2007 is derived from the trajectories of the Array for Real-time Geostrophic Oceanography (Argo) drifting on surface over the global ocean. The error of the estimated surface currents is about 4.7 cm s-1 which is equivalent to the accuracy of the currents determined from the surface drifters. Geographically, the Argo-derived surface currents can fill many gaps left by the Global Drifter Program due to the greater number of floats, and can provide a complementary in situ observational system for monitoring global ocean surface currents. The surface currents from the Argo floats are compared with the surface drifter-derived currents and the Tropical Atmosphere Ocean program (TAO) measurements. The comparisons show good agreement for both the current amplitude and the direction of surface currents. Results indicate the feasibility of obtaining ocean surface currents from the Argo array and of combining the surface currents from Argo and the ocean surface drifters for in situ mapping of the global surface currents. The authors also make the dataset available to users of interest for many types of applications.
基金The National High Technology Research and Development Program of China under contract No.2007AA09Z117the Science and Technology Project of the North China Sea Brach of SOA under contract No.2012A01the Joint BMBF-WTZ Project of China under contract No. CHN 09/031
文摘Surface currents measured by high frequency (HF) radar arrays are assimilated into a regional ocean model over Qingdao coastal waters based on Kalman filter method. A series of numerical experiments are per- formed to evaluate the performance of the data assimilation schemes. In order to optimize the analysis pro- cedure in the traditional ensemble Kalman filter (ENKF), a different analysis scheme called quasiensemble Kaman filter (QENKF) is proposed. The comparisons between the ENKF and the QENKF suggest that both them can improve the simulated error and the spatial structure. The estimations of the background error covariance (BEC) are also assessed by comparing three different methods: Monte Carlo method; Canadian quick covariance (CQC) method and data uncertainty engine (DUE) method. A significant reduction of the root-mean-square (RMS) errors between model results and the observations shows that the CQC method is able to better reproduce the error statistics for this coastal ocean model and the corresponding external forcing. In addition, the sensibility of the data assimilation system to the ensemble size is also analyzed by means of different scales of the ensemble size used in the experiments. It is found that given the balance of the computational cost and the forecasting accuracy, the ensemble size of 50 will be an appropriate choice in the Qingdao coastal waters.
基金supported by the China Scholarship Council(Grant No.2011671057)the European Regional Development Fund(ERDF)through the Atlantic Area Transnational Programme(INTERREG IV)the National University of Ireland
文摘A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs) and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC), was developed based on a terrain-following vertical (sigma) coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tideand wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.
文摘HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arrival) determination of sea echoes. The algorithm of ESPRIT is briefly introduced first. Then discussions are made on the technique for application in the OSMAR2000 framework. Numerical simulation results are presented to demonstrate the feasibility of radial current mapping based on this method. The algorithm manifests significant performance and computational advantages compared with that of MUSIC. Data acquired by OSMAR2000 are processed to give radial current map and the synthesized vector currents are compared with the in-situ measurement with traditional means. The results show the validity of ESPRIT application in DOA determination for broad-beam radar. Key words HF ground wave radar - sea surface current - ESPRIT - MUSIC CLC number TN 911.72 - TN 958.95 Foundation item: Supported by the National Natural Science Foundation of China (60201003) and the National High Technology Development 863 Program of China (863-818-01-02)Biography: Liu Dan-hong (1976-), female, Master candidate, research direction: radar signal processing.
文摘The incorrect surface current may be obtained in the vicinity of the resonant frequencies when the method of moments is used to solve either the electric or magnetic field surface integral equation. An effective method is presented to determine the correct surface current, i.e., the correct surface current, i.e., the correct surface current is composed of the non-resonant mode current and the normalized resonant mode current multiplied by an unknown complex factor. The unknown complex factor can be obtained by employing the condition that the total field inside the conducting closed body must be zero at specified interior points. A numerical example is given for an infinitely long and perfectly conducting circular cylinder at the interior resonance, and the calculated surface currents are in good agreement with the analytical ones. The validity and accuracy of the presented method is thus verified.
文摘The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.
基金supported by the National Natural Science Foundation of China (Grant No. 51005001)the National Science Foundation for Post-doctoral Scientists in China (Grant No. 20090450226)+1 种基金the Research Foundation of Education Bureau of Heilongjiang Province, China (Grant No. 11551098)the Youth Foundation of Harbin University of Science and Technology, China (Grant No. 2009YF024)
文摘We propose a bulk negative refractive index (NRI) metamaterial composed of periodic array of tightly coupled metallic cross-pairs printed oR the six sides of a cube for applications of superlenses. The structural characteristics of the three-dimensional (3D) metamaterial consist in the high symmetry and the superposition of metallic cross-pairs, which can increase the magnetic inductive coupling between adjacent cross-pairs and realize a broadband and isotropic NRI. The proposed 3D structure is simulated using the CS~ Microwave Studio 2006 to verify the design validity. The simulation results show that the proposed structure can not only realize simultaneously an electric and magnetic response to an incident electromagnetic (EM) wave, but also exhibit a broadband NRI whose relative bandwidth can reach up to 56.7%. In addition, the NRI band is insensitive to tile polarization and the incident angle of the incident EM wave. Therefore, the proposed metamaterial is a good candidate material as three-dimensional broadband isotropic NRI metamaterial.
基金Supported by the National Natural Science Foundation of China(No.42106034)the Laboratory for Regional Oceanography and Numerical Modeling,Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2019A02)+1 种基金the Basic Scientifi c Fund for National Public Research Institutes of China(No.2020Q05)the National Natural Science Foundation of China(Nos.41706034,41706225,41906003)。
文摘By incorporating the wave-induced Coriolis-Stokes forcing into the classical Ekman layer,the wave-modifi ed ocean surface currents in the northwestern Pacifi c Ocean were estimated.Thus,the ocean surface currents are the combination of classical Ekman current from the cross-calibrated multi-platform(CCMP)wind speed,geostrophic current from the mean absolute dynamic topography(MADT),and wave-induced current based on the European Centre for Medium-Range Weather Forecasts(ECMWF)Interim Re-Analysis(ERA-Interim)surface wave datasets.Weight functions are introduced in the Ekman current formulation as well.Comparisons with in-situ data from Lagrangian drifters in the study area and Kuroshio Extension Observatory(KEO)observations at 32.3°N,144.6°E,and 15-m depth indicate that wave-modifi ed ocean surface currents provide accurate time means of zonal and meridional currents in the northwestern Pacifi c Ocean.Result shows that the wave-modifi ed currents are quite consistent with the Lagrangian drifter observations for the period 1993-2017 in the deep ocean.The correlation(root mean square error,RMSE)is 0.96(1.45 cm/s)for the zonal component and 0.90(1.07 cm/s)for the meridional component.However,wave-modifi ed currents underestimate the Lagrangian drifter velocity in strong current and some off shore regions,especially in the regions along the Japan coast and the southeastern Mindanao.What’s more,the wave-modifi ed currents overestimate the pure Eulerian KEO current which does not consider the impact of waves,and the zonal(meridional)correlation and RMSE are 0.95(0.90)and 11.25 cm/s(12.05 cm/s)respectively.These comparisons demonstrate that our wave-modifi ed ocean surface currents have high precision and can describe the real-world ocean in the northwestern Pacifi c Ocean accurately and intuitively,which can provide important routes to calculate ocean surface currents on large spatial scales.
基金Supported by the National Natural Science Foundation of China(Nos.42176174,41706196)the Sichuan Science and Technology Program(No.2018JY0484)+4 种基金the Natural Science Key Research Program of Education Department of Sichuan Province(No.18ZA0103)the China Postdoctoral Science Foundation(No.2020M683258)the Provincial Science and Technology Innovation Development Project of China Meteorological Administration(No.SSCX2020CQ)the Chongqing Technology Innovation and Application Development Special Project(No.cstc2020jscx-msxmX0193)the Chongqing Meteorological Department Business Technology Research Project(No.YWJSGG-202017)。
文摘Values for Doppler center frequency are calculated from the echo signal at the satellite using the Doppler centroid method and so include the predicted Doppler frequency caused by the relative motion of the satellite and the Earth,which is the main component of Doppler center frequency and must be removed to obtain the Doppler frequency anomaly for ocean current measurement.In this paper,a new Doppler frequency anomaly algorithm was proposed when measuring surface currents with synthetic aperture radar(SAR).The key of the proposed algorithm involved mean filtering method in the range direction and linear fitting in the azimuth direction to remove the radial and the azimuthal component of predicted Doppler frequency from the Doppler center frequency,respectively.The basis is that the theoretical Doppler center frequency model of SAR exhibits an approximately linear characteristic in both the range direction and in the azimuth direction.With the help of the new algorithm for predicted Doppler frequency removal,the estimation error of Doppler frequency anomaly can be reduced by avoiding employing the theoretical antenna pattern and imperfect satellite attitude parameters in the conventional Doppler frequency method.SAR measurement results demonstrated that,compared to the conventional Doppler frequency with/without error correction method,the proposed algorithm allows for a pronounced improvement in the current measuring accuracy in comparison with the global ocean multi-observation(MOB)products.In addition,the eff ectiveness and robustness of the proposed Doppler algorithm has been demonstrated by its application in the high velocity current in the Kuroshio region.
基金The authors would like to thank the financial support from the National Key Research and Development Program of China(Nos.2020YFE0201200,2019YFC1509100)the partial support by the Youth Program of Natural Science Foundation of China(No.41706010)the Fundamental Research Funds for the Central Universities(No.202264002).
文摘Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability of ocean currents also makes the prediction methods based on time series data challenging.The deep network model can automatically learn and extract complex features hidden in large amount of complex data,so it is a promising method for high quality prediction of ocean currents.In this paper,we propose a spatiotemporal coupled attention deep network model STCANet that can extract abundant temporal and spatial coupling information on the behavior characteristics of ocean currents for improving the prediction accuracy.Firstly,Spatial Module is designed and implemented to extract the spatiotemporal coupling characteristics of ocean currents,and meanwhile the spatial correlations and dependencies among adjacent sea areas are obtained through Spatial Channel Attention Module(SCAM).Secondly,we use the GatedRecurrent-Unit(GRU)to extract temporal relationships of ocean currents,and design and implement the nearest neighbor time attention module to extract the interdependences of ocean currents between adjacent times,which can further improve the accuracy of ocean current prediction.Finally,a series of comparative experiments on the MediSea_Dataset and EastSea_Dataset showed that the prediction quality of our model greatly outperforms those of other benchmark models such as History Average(HA),Autoregressive Integrated Moving Average Model(ARIMA),Long Short-term Memory(LSTM),Gate Recurrent Unit(GRU)and CNN_GRU.
基金The National Key Research and Development Program under contract No.2016YFC1401002the National Natural Science Foundation of China under contract Nos 41606201,41576173,41620104003 and 41706202.
文摘This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down continuous wave linear frequency modulated signals that allow for the offset of two one-dimensional range images of the sea surface that respectively correspond to the upward linear frequency modulated(LFM)signal and the downward LFM signal.Owing to the Doppler frequency shift from the sea surface,a range offset,which is proportional to the radial velocity of the sea surface,occurs between the upward and downward LFM signals.By using the least-squares linear fitting method in the transformed domain,the range offset can be measured and the current velocity can be retrieved.Finally,we verify the accuracy of current measurement with simulation results.
文摘A series of NOAA AVHRR data over the East China Sea were collected from the ground station of the Second Institute of Oceanography, Hangzhou, China. Three methods, including a functional analytic method (FAM), a maximum cross correlation (MCC)'method and a correlation relaxation (C - R) method, are applied to derive the sea surface current field from sequential satellite images in the area of the East China Sea. Several preprocessing steps, such as geometric correction, SST determination, image projection, image navigation and grey value normalization as well as land and cloud mask are performed. The results from the three methods reflect the general current system in this area reasonably.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.91958203,41776027,and 41606009)the Xiamen University Fundamental Research Funds for the Central Universities(Nos.20720180103,20720180099)+1 种基金the Laboratory for Regional Oceanography and Numerical Modeling,Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2017A02)the municipal project of Huizhou City(No.F2017-01-1)
文摘GPS-based surface drifters were used to investigate the surface currents in Daya Bay and along the eastern Guangdong coast in China.Surface current vectors were measured based on the GPS location and corresponding time information sent by drifters through the mobile phone network.The analysis of data from 120 drifters,deployed in late spring 2018 in the case-study region,shows that the drifters are generally capable of capturing the surface(tidal and residual)currents.The drifter trajectories suggest an anticlockwise surface current inside Daya Bay and a north-eastward current along the eastern Guangdong coast,where the coastal current along the eastern Guangdong coast is faster than that inside Daya Bay.The surface currents in the investigated region follow an irregular semidiurnal cycle due to the influence of the tidal current,while the currents inside Daya Bay are strongly affected by the topography.According to the harmonic analysis,an irregular semidiurnal type of tidal current is evident at a study grid inside Daya Bay,with an Eulerian residual current speed of 9.0 cm/s and a direction of 276°.The Lagrangian residual current outside Daya Bay moves north-eastward with a mean speed of 22 cm/s along the eastern Guangdong coast,while the current inside Daya Bay moves northward to the bay head with a mean speed of about 8.0 cm/s,which agrees well with the one reported in other literatures.
基金Project supported by the National Natural Science Foundation of China(Grant No.41276187)the Global Change Research Program of China(Grant No.2015CB953901)+3 种基金the Priority Academic Development Program of Jiangsu Higher Education Institutions(PAPD)Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province,Chinathe Canadian Program on Energy Research and Developmentthe Canadian World Class Tanker Safety Service
文摘To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface,a fractal sea surface wave–current model is derived,based on the mechanism of wave–current interactions.The numerical results show the effect of the ocean current on the wave.Wave amplitude decreases,wavelength and kurtosis of wave height increase,spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave.By comparison,wave amplitude increases,wavelength and kurtosis of wave height decrease,spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave.The wave–current interaction effect of the ocean current is much stronger than that of the nonlinear wave–wave interaction.The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface.The effect of the current on skewness of the probability distribution function is negligible.Therefore,the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal.
基金supported by the SOA Global Change&Air-Sea Interaction Project(Grant Nos.GASI-02-PAC-YGST2-02 and GASI-IPOVAI-01-04)the Open Research Fund of State Key Laboratory of Information Engineering in Surveying,the Mapping and Remote Sensing,Wuhan University(Grant No.18T08)the National Natural Science Foundation of China(Grant Nos.91858202,41476007&41630963)。
文摘Ocean surface currents play a key role in the earth’s climate.They affect virtually all processes occurring in the ocean and can also directly affect many important socio-economic activities.Himawari-8 meteorological satellite has an international advanced geostationary orbit imager sensor,AHI,with high time resolution and spatial coverage,Himawari-8 can be used to observe the subtle changes in marine environments.In this study,we used Himawari-8 data received from the Joint Receiving Station for Satellite Remote Sensing of Xiamen University to retrieve coastal currents in Hangzhou Bay.Particularly,the Maximum Correlation Coefficient(MCC)and the Generalized Hough Transform(GHT)methods were used to retrieve them respectively.The retrieved sea surface currents are analyzed and verified by the numerical model data of the Taiwan Strait current forecasting system(TFOR).The results show that(1)the Himawari-8 satellite data can be used to effectively estimate the ocean current;(2)The results of the two methods are in agreement with each other,and the error in the current measured using the GHT method is smaller in the Yangtze estuary and offshore areas,where the turbidity characteristic front is stronger.
基金The National High Technology Research and Development Program of China(863 Program)under contract No.2012AA091701the Fundamental Research Fund for the Central Universities of China under contract No.2012212020211
文摘Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.