期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction
1
作者 Hongxing Yuan Wei Gao +2 位作者 Xinhao Wan Jianqi Ye Dan Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期557-564,I0013,共9页
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic... The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts. 展开更多
关键词 Noble metal aerogels surface electronic structure ORR ELECTROCATALYST Organic ligands
下载PDF
Impact of Surface Passivation on the Electronic Structure and Optical Properties of the Si1-xGex Nanowires 被引量:1
2
作者 赖信 张析 +1 位作者 张依兮 向钢 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第2期119-122,共4页
The electronic structures and optical properties of the [llO]-oriented Sil-xGex nanowires (NWs) passivated with different functional groups (-H, -F and-OH) are investigated by using first-principles calculations. ... The electronic structures and optical properties of the [llO]-oriented Sil-xGex nanowires (NWs) passivated with different functional groups (-H, -F and-OH) are investigated by using first-principles calculations. The results show that surface passivation influences the characteristics of electronic band structures significantly: the band gap widths and types (direct or indirect) of the Si1-xGe, NWs with different terminators show complex and robust variations, and the effective masses of the electrons in the NWs can be modulated dramatically by the terminators. The study of optical absorption shows that the main peaks of the parallel polarization component of Si1-x Gex NWs passivated with the functional groups exhibit prominent changes both in height and position, and are red-shifted with respect to those of corresponding pure Si NWs, indicating the importance of both the terminators and Ge concentrations. Our results demonstrate that the electronic and optical properties of Si1-xGex NWs can be tuned by utilizing selected functional groups as well as particular Ge concentrations for customizing purposes. 展开更多
关键词 110 OH x)Ge_x Nanowires Impact of surface Passivation on the electronic structure and Optical Properties of the Si Ge
下载PDF
Soil Microbial Responses to Biochars Varying in Particle Size,Surface and Pore Properties 被引量:12
3
作者 Noraini M.JAAFAR Peta L.CLODE Lynette K.ABBOTT 《Pedosphere》 SCIE CAS CSCD 2015年第5期770-780,共11页
Biochars are known for their heterogeneity, especially in pore and surface structure associated with pyrolysis processes and sources of feedstocks. The surface area of biochar is likely to be an important determinant ... Biochars are known for their heterogeneity, especially in pore and surface structure associated with pyrolysis processes and sources of feedstocks. The surface area of biochar is likely to be an important determinant of the extent of soil microbial attachment, whereas the porous structure of biochar is expected to provide protection for soil microorganisms. Potential interactions between biochars from different sources and with different particle sizes were investigated in relation to soil microbial properties in a short-term incubation study. Three particle size (sieved) fractions (0.5-1.0, 1.0-2.0 and 2.0-4.0 mm) from three woody biochars produced from jarrah wood, jarrah and wandoo wood and Australian wattle branches, respectively, were incubated in soil at 25 ℃ for 56 d. Observation by scanning electron microscopy (SEM) and characterisation of pore and surface area showed that all three woody biochars provided potential habitats for soil microorganisms due to their high porosity and surface areas. The biochars were structurally heterogeneous, varying in porosity and surface structure both within and between the biochar sources. After the 56-d incubation, hyphal colonisation was observed on biochar surfaces and in larger biochar pores. Soil clumping occurred on biochar particles, cementing and covering exposed biochar pores. This may have altered surface area and pore availability for microbial colonisation. Transient changes in soil microbial biomass, without a consistent trend, were observed among biochars during the 56-d incubation. 展开更多
关键词 microbial biomass microbial colonisation microbial habitats porosity scanning electron microscopy surface structure
原文传递
Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C_(2) products 被引量:1
4
作者 Xiao-Dong Zhang Kang Liu +4 位作者 Jun-Wei Fu Hong-Mei Li Hao Pan Jun-Hua Hu Min Liu 《Frontiers of physics》 SCIE CSCD 2021年第6期143-150,共8页
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)to obtain C_(2) products has drawn widespread attentions.Copper-based materials are the most reported catalysts for CO_(2) reduction to C_(2) products.Design of high... Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)to obtain C_(2) products has drawn widespread attentions.Copper-based materials are the most reported catalysts for CO_(2) reduction to C_(2) products.Design of high-efficiency pseudo-copper catalysts according to the key characteristics of copper(Cu)is an important strategy to understand the reaction mechanism of C_(2) products.In this work,density function theory(DFT)calculations are used to predict nickel–zinc(NiZn)alloy catalysts with the criteria similar structure and intermediate adsorption property to Cu catalyst.The calculated tops of 3d states of NiZn3(001)catalysts are the same as Cu(100),which is the key parameter affecting the adsorption of intermediate products.As a result,NiZn3(001)exhibits similar adsorption properties with Cu(100)on the crucial intermediates*CO_(2),*CO and*H.Moreover,we further studied CO formation,CO hydrogenation and C–C coupling process on Ni–Zn alloys.The free energy profile of C_(2) products formation shows that the energy barrier of C_(2) products formation on NiZn3(001)is even lower than Cu(100).These results indicate that NiZn3 alloy as pseudo-copper catalyst can exhibit a higher catalytic activity and selectivity of C_(2) products during CO_(2)RR.This work proposes a feasible pseudo-copper catalyst and provides guidance to design high-efficiency catalysts for CO_(2)RR to C_(2) or multi-carbon products. 展开更多
关键词 pseudo-copper catalysts surface and electronic structure adsorption abilities Ni–Zn alloys CO_(2)RR C_(2)products DFT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部