Electrochemical CO_(2)reduction to formate is a promising approach to store renewable electricity and utilize CO_(2).Tin oxide catalysts are efficient catalysts for this process,while the mechanisms underneath,especia...Electrochemical CO_(2)reduction to formate is a promising approach to store renewable electricity and utilize CO_(2).Tin oxide catalysts are efficient catalysts for this process,while the mechanisms underneath,especially the existence and role of oxidized tin species under CO2 electroreduction conditions remain unclear.In this work,we provide strong evidence on the presence of oxidized tin species on both SnO_(2)and Sn during CO_(2)reduction via in situ surface‐enhanced Raman spectroscopy,while in different nature.Reactivity measurements show similar activity and selectivity to formate production on SnO_(2)and Sn catalysts.Combined analysis of Raman spectra and reactivity results suggests that Sn(IV)and Sn(II)oxide species are unlikely the catalytic species in CO_(2)electroreduction to formate.展开更多
The development of efficient three-dimensional cell imaging technology is a necessary means to study cell composition and structure,especially to track and monitor the phagocytosis process of nanoparticles by cells.He...The development of efficient three-dimensional cell imaging technology is a necessary means to study cell composition and structure,especially to track and monitor the phagocytosis process of nanoparticles by cells.Herein,we prepared a MoO_(2)hollow nanosphere with a strong surface plasmon resonance effect in the visible light region,which exhibited an excellent surface enhanced Raman scattering effect.When the 4-mercaptobenzoic acid(4-MBA)molecules are modified,it can be efficiently used as Raman probe molecules to perform clear three-dimensional cell imaging.No matter when the nanoparticles are located inside the cell,outside the cell or partly inside the cell,they all can be clearly presented by this enhanced Raman probe molecule.These results provide a rapid and accurate method for three-dimensional imaging of cells,especially for tracking the phagocytosis of nanoparticles.展开更多
文摘Electrochemical CO_(2)reduction to formate is a promising approach to store renewable electricity and utilize CO_(2).Tin oxide catalysts are efficient catalysts for this process,while the mechanisms underneath,especially the existence and role of oxidized tin species under CO2 electroreduction conditions remain unclear.In this work,we provide strong evidence on the presence of oxidized tin species on both SnO_(2)and Sn during CO_(2)reduction via in situ surface‐enhanced Raman spectroscopy,while in different nature.Reactivity measurements show similar activity and selectivity to formate production on SnO_(2)and Sn catalysts.Combined analysis of Raman spectra and reactivity results suggests that Sn(IV)and Sn(II)oxide species are unlikely the catalytic species in CO_(2)electroreduction to formate.
基金This work received financial support from the Science Foundation of Chinese Academy of Inspection and Quarantine(No.2017JK045)the National Key Research and Development Program of China(No.2017YFF0210003).
文摘The development of efficient three-dimensional cell imaging technology is a necessary means to study cell composition and structure,especially to track and monitor the phagocytosis process of nanoparticles by cells.Herein,we prepared a MoO_(2)hollow nanosphere with a strong surface plasmon resonance effect in the visible light region,which exhibited an excellent surface enhanced Raman scattering effect.When the 4-mercaptobenzoic acid(4-MBA)molecules are modified,it can be efficiently used as Raman probe molecules to perform clear three-dimensional cell imaging.No matter when the nanoparticles are located inside the cell,outside the cell or partly inside the cell,they all can be clearly presented by this enhanced Raman probe molecule.These results provide a rapid and accurate method for three-dimensional imaging of cells,especially for tracking the phagocytosis of nanoparticles.