To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to hel...To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to help the operator grind a free surface with the high accuracy and the high productivity. To succeed in free surface grinding, the property of a ball type wheel must be known. Therefore, a basic study of free surface grinding with a ball type wheel is carried out based on the grinding center (GC). Some working points for achieving sufficient accuracy in free surface grinding are discussed. GSX-F is constructed using the patch division method and is used to test grinding. Reasonable results are obtained.展开更多
The surface grinding temperature of the silicon wafer ground by diamond wheels is studied.Rudimentally,the properties of the surface grinding temperature generated by two grinding methods,ground by straight and cup wh...The surface grinding temperature of the silicon wafer ground by diamond wheels is studied.Rudimentally,the properties of the surface grinding temperature generated by two grinding methods,ground by straight and cup wheels respectively,are analyzed.In addition,considering the effects of grain size and grinding depth on surface grinding temperature during these two grinding processes,significant results and conclusions are obtained from experimental research.展开更多
The bearing is described by constrain matrix, and the spindle system of a NCsurface grinding machine is simplified as elastic-coupling beam, then modal synthesis method is usedto establish the dynamic model of beam. M...The bearing is described by constrain matrix, and the spindle system of a NCsurface grinding machine is simplified as elastic-coupling beam, then modal synthesis method is usedto establish the dynamic model of beam. Moreover, the response of the end of rotor is analyzed, andthe natural frequency, principle mode and other dynamic characteristics of the coupling system arestudied, the law of bearing stiffness to coupling frequency and amplitude of rotor is also found.Finally, according to the actual condition, a dynamic absorber is designed. The simulation andexperimental results show that the amplitude of spindle can be declined effectively when the dynamicabsorber is attached.展开更多
The paper submits a method to calculate thermal deformation and manufacture error in surface grinding. The author established a simplified temperature field model, and derived the thermal deformation of the ground wor...The paper submits a method to calculate thermal deformation and manufacture error in surface grinding. The author established a simplified temperature field model, and derived the thermal deformation of the ground workpiece. It is found that there exists not only a upwarp thermal deformation, but also a parallel expansion thermal deformation. A upwarp thermal deformation causes a concave shape error on the profile of the workpiece, and a parallel expansion thermal deformation causes a dimension error in height. The calculations of examples are given and compared with presented experiment data.展开更多
This paper presents an experimental study that helps to determine the optimum exchanged diameter in surface grinding. In the paper, the cost of a surface grinding process was analysed. In the cost structure, the effec...This paper presents an experimental study that helps to determine the optimum exchanged diameter in surface grinding. In the paper, the cost of a surface grinding process was analysed. In the cost structure, the effects of the cost parameters such as machine tool hourly rate, grinding wheel cost were taken into account. Also, process parameters including the initial grinding wheel diameter, the wheel life, the dressing regime and so on were investigated. Based on the cost structure, the set up and the procedure of the experiment for finding the optimum diameter was pointed out. From experimental results, the optimum exchanged grinding wheel diameter was found. Grinding with the optimum exchanged diameter, both the grinding cost and grinding time can be reduced significantly.展开更多
This paper introduces a new study on cost optimization of surface grinding. In the study, the effects of grinding parameters including the dressing regime parameters, the wheel life and the initial grinding wheel diam...This paper introduces a new study on cost optimization of surface grinding. In the study, the effects of grinding parameters including the dressing regime parameters, the wheel life and the initial grinding wheel diameter on the exchanged grinding wheel diameter which were investigated. In addition, the influence of cost parameters including the machine tool hourly rate and the grinding wheel cost were taken into account. In order to find the optimum exchanged grinding wheel diameter, a cost optimization problem was built. From the results of the optimization problem, a model for determination of the optimum exchanged grinding wheel diameter was found. By using the optimum diameter, both the grinding cost and grinding time can be reduced significantly.展开更多
An experimental study was carried out to investigat e the influence of temperatures on workpiece surface integrity in surface grinding of a cast nickel-based superalloy with alumina abrasive wheels. Temperatur e respo...An experimental study was carried out to investigat e the influence of temperatures on workpiece surface integrity in surface grinding of a cast nickel-based superalloy with alumina abrasive wheels. Temperatur e response at the wheel-workpiece interface was measured using a grindable foil /workpiece thermocouple. Specimens with different grinding temperatures were obt ained through changing grinding conditions including depth of cut, workpiece fee d speed, and coolant supply. Changes in surface roughness, residual stress, meta llographies, ground surface morphology, and micro hardness on the specimens were then analyzed. Bending fatigue tests were separately conducted at room temperat ure and 950oC in an effort to evaluate the influence of temperatures on the serv ice life of the ground specimens. A different burning color was found on the gro und workpiece surfaces when grinding temperatures are over a critical value. Alo ng with the emergence of burning color, roughness of the ground workpiece surfac e increased greatly compared with the surfaces without burning color, which was attributed to the plastically deformed coatings on the workpiece surface with el evated temperatures. Excepting the surface roughness, other items concerning the surface integrity of the ground workpiece were not affected by temperatures pro vided that grinding temperatures are not high enough to cause grinding cracks. B ased on the findings in this study, the grinding of the nickel-based superalloy can be divided into two stages in order to increase production efficiency, in which case the first stage is to reach an high material removal rate without concerning of the presence of burning color, whereas the second stage is to remo ve the plastically deformed coatings in order to decrease surface roughness.展开更多
To address the problems of thermal damage to a workpiece surface caused by the instantaneous high temperature during grinding and the difficulty in monitoring temperature in real time,the temperature field in the case...To address the problems of thermal damage to a workpiece surface caused by the instantaneous high temperature during grinding and the difficulty in monitoring temperature in real time,the temperature field in the case of composite surface grinding by a cup wheel is studied.In order to predict the grinding temperature,considering material removal and grinding force distribution,a nonuniform heat source model with different function distributions in the circumferential and radial directions in the cylindrical coordinate system is first proposed;then,the analytical model is deduced and the numerical model of the temperature field is established based on the heat source model.The validation experiments for grinding temperature field are carried out using a high-definition infrared thermal imager and an artificial thermocouple.Compared to the temperature field based on the uniform heat source model,the results based on the non-uniform heat source model are in better agreement with the actual temperature field,and the temperature prediction error is reduced from approximately 23% to 6%.Thus,the present study provides a more accurate theoretical basis for preventing bums in cup wheel surface grinding.展开更多
A low carbon hypoeutectoid steel(0.19 wt%C)with proeutectoid ferrite and pearlite dual-components was subjected to surface plastic deformation via pipe inner surface grinding(PISG)at room temperature.The deformation m...A low carbon hypoeutectoid steel(0.19 wt%C)with proeutectoid ferrite and pearlite dual-components was subjected to surface plastic deformation via pipe inner surface grinding(PISG)at room temperature.The deformation microstructures for each component were systematically characterized along depth,and the patterns of structural evolution toward nanometer regime as well as the governing parameters were addressed.Proeutectoid ferrite grains were refined down to 17 nm,and the pattern covering a length scale of 4–5 orders of magnitude from micron-to nanometer-scale follows:formation of cellular dislocation structure(CDS),elongated dislocation structure(EDS),ultrafine lamellar structure(UFL)and finally the nanolaminated structure(NL).The pearlite experiences the deformation and refinement,and finally the transforming the ultrafine pearlite(UFP)into nanolaminated pearlite(NLP)with the ferrite lamellae as thin as 20 nm.Refinement for both UFL(UFP)and NL(NLP)can be realized via forming novel extended boundaries within ferrite lamellae.A critical lattice curvature of~2.8°is required for forming such extended boundary,corresponding to a minimum strain gradient of 0.25μm^(-1)for a 100 nm-thick lamella.Refinement below size limit(expressed by lamellar thickness d_Tin nm)is correlated with the strain gradient(χ,inμm^(-1))by:d_T=12.5/x.Refinement contributions from strain gradient caused by PISG processing and material heterogeneity were discussed.展开更多
On going trend of miniaturization in electronic rel at ed parts, which is an average of two times in every 5~7 years introduce grindin g challenges. In grinding process, the surface waviness control of thin parts is ...On going trend of miniaturization in electronic rel at ed parts, which is an average of two times in every 5~7 years introduce grindin g challenges. In grinding process, the surface waviness control of thin parts is an ardent task due to its warpage, induced by the high specific grinding energy (2~10 J/mm 3). Therefore, coolant is often used to avoid thermal damage, obtai n better surface integrity and to prolong wheel life. However coolant, the incomp ressibility media introduce high forces at the grinding zone creating dimensiona l as well as shape instability. In view of these situations chilled air was ap plied in place of conventional coolant. The chilled air is produced using a two -stage vapor compression refrigeration cycle with characteristics of: temperatu re -35 ℃, pressure 0.2~0.3 MPa and flow rate 0.4 m 3/min. Also traces of eco - oil mist that encompass the chilled air are supplied to the grinding zone. B oth chilled air and eco-oil mist are applied through two independent paths of a specially designed twin compartment nozzle for maximizing the penetration. This paper investigates the grinding characteristics of mold insert which is closer to M2 tool steel (component widely used in connector industries) when using chil led air as coolant media. Grinding experiments were conducted using a vitrified bond CBN wheel (B91N100V) and a surface grinder. Initial study was focussed on establishing the most suita ble clamping method for the thin mold insert. FEM analysis and grinding experime nt studies were performed to quantitatively analyze the clamping induced deflect ion. Waviness value (W t) of (24~62) μm was achieved for resin clampi n g whereas (4~8) μm, (4~6) μm were achieved for magnetic and wax clamping res pe ctively. Wax clamping is predominantly used in all the grinding experiments that characterize the grinding process, which use chilled air as the coolant media. Between 0.15 to 0.9 mm 3/mm.s of specific material removal rate, ground sur face temperature of mold insert was increased from 0.3 ℃ to 59.7 ℃ for chi lled air. For the similar grinding conditions with the coolant fluid an increase from 0.9 ℃ to 14.4 ℃ was recorded. With increase of specific material removal rate from 0.15 to 0.65 mm 3/mm.s, F t/F n ratio was increased from (0.2 to 0.4), (0.6 to 1.67) for wet coolant and chilled air respectively. Despite of high F t/F n ratio and ground surface temperature, chilled air method has shown a surface waviness, W t from (2 to 5.6) μm. Microstructure examination of chilled air produced ground surface was comparable to those of using coolant fluids. Surface finish, R a of (0.45~0.7) μm was achieved for mold insert . This work will enable to have clear understanding about the quantitative influe nce of chilled air as well as the clamping method against the surface waviness o f thin mold insert.展开更多
Mg-Cu alloys are promising antibacterial implant materials.However,their clinical applications have been impeded by their high initial biodegradation rate,which can be alleviated using nanotechnology by for example su...Mg-Cu alloys are promising antibacterial implant materials.However,their clinical applications have been impeded by their high initial biodegradation rate,which can be alleviated using nanotechnology by for example surface nanomodification to obtain a gradient nanostructured surface layer.The present work(i)produced a gradient nanostructured surface layer with a∼500µm thickness on a Mg-0.2 Cu alloy by a surface mechanical grinding treatment(SMGT),and(ii)studied the biodegradation behavior in Hank's solution.The initial biodegradation rate of the SMGTed samples was significantly lower than that of the unSMGTed original counterparts,which was attributed to the surface nanocrystallization,and the fragmentation and re-dissolution of Mg_(2)Cu particles in the surface of the SMGTed Mg-0.2 Cu alloy.Furthermore,the SMGTed Mg-0.2 Cu alloy had good antibacterial efficacy.This work creatively used SMGT technology to produce a high-performance Mg alloy implant material.展开更多
Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of ...Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of as-received one,but moderate ductility between those of ultra-fine grained(UFG) and coarse-grained titanium.Tensile stress-strain curves of SMGT-treated titanium show double strain hardening regimes.The strain hardening rate(dσ/dε) decreases with increasing strain in tensile deformation.The high strain hardening rate at initial yielding is attributed to nano-to-micron-grained surface layer.The low strain hardening rate at large plastic strain regime primarily results from coarse-grained matrix.The SMGT-treated titanium shows a ductile fracture mode with a large number of dimples.The small size of dimples in the treated surface layer is due to the combination of the high strength and strain hardening exponent.The difference between dimple size in nano-to-micron-grained surface layer and coarse-grained matrix is discussed in terms of plastic zone size at the tip of crack in the SMGT-treated titanium.展开更多
To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic co...To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic compensation. To better understand the characteristics of the grinding machine modulated with micropositioning workpiece table, the dynamic model of the grinding system was established with modal synthesis and Lagrange's equation methods. The grinding system was divided into five subsystems. For each subsystem, the generalized kinematic and potential energies were obtained. Accordingly the dynamic model of the grinding system was given in the modal domain. The waviness of the grinding process was achieved based on the wheel and workpiece vibration. A nonlinear proportional integral derivative (PID) controller with differential trackers was developed to realize dynamic control. The simulation results show that the machining accuracy of the workpiece can be effectively improved by utilizing the micropositioning workpiece table to implement dynamic compensation. An experimental test was carried out to verify the proposed method, and the waviness of the workpiece can be reduced from 0.46 μm to 0.10 μm.展开更多
The most important grinding processes were realized in a single pass of the grinding wheel,such as continuous path controlled grinding (CPCG/Peelgrinding/HSP),CPCG with reduced contact of the grinding wheel (Quickpoin...The most important grinding processes were realized in a single pass of the grinding wheel,such as continuous path controlled grinding (CPCG/Peelgrinding/HSP),CPCG with reduced contact of the grinding wheel (Quickpoint),single-pass longitudinal internal grinding,creep feed grinding (CFG),longitudinal cylindrical grinding with grinding wheels made of conventional abrasive materials and longitudinal internal cylindrical grinding using grinding wheels with zone-diversified structure.展开更多
The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding tr...The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer.展开更多
GH4169 is the main material for aero-cngine blades and integrated blisks. Because GH4169 has a poor milling performance, the profile precision and surtace integrity of blades and integrated blisks are difficult to be ...GH4169 is the main material for aero-cngine blades and integrated blisks. Because GH4169 has a poor milling performance, the profile precision and surtace integrity of blades and integrated blisks are difficult to be met by utilizing the conventional milling process, which directly influence the global performance and reliability of aero-engines. Through grinding experiments on parameters and surface integrity optimization, the helical cantilever grinding process utilizing a 300# CBN RB wheel is presented and applied in finish machining of GH4169 blades. The profile errors of the blade surface are within ±0.01 mm, the roughness is less than 0.4μm, the residual compressive stresses and the hardening rate are appropriate, there are no phenomena of burr and smearing with the grinding chips, and the leading/trailing edge can be smoothly connected with the suction/pressure surface. All the experimental results indicate that this grinding process is greatly suitable for the profile finish machining of GH4169 blades.展开更多
(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforc...(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforcements, high strength and low thermal conductivity of Ti-6Al-4V alloy matrix. Grinding experiments with vitrified CBN wheels were conducted to analyze comparatively the grinding performance of PTMCs and Ti-6Al-4V alloy. Grinding force and force ratios, specific grinding energy, grinding temperature, surface roughness, ground surface appearance were discussed. The results show that the normal grinding force and the force ratios of PTMCs are much larger than that of Ti-6Al-4V alloy. Low depth of cut and high workpiece speed are generally beneficial to achieve the precision ground surface for PTMCs. The hard reinforcements of PTMCs are mainly removed in the ductile mode during grinding. However, the removal phenomenon of the reinforcements due to brittle fracture still exists, which contributes to the lower specific grinding energy and grinding temperature of PTMCs than Ti-6Al-4V alloy.展开更多
In Germany, diamond grinding is frequently used to improve the evenness and skid resistance of concrete pavement surfaces. Since diamond grinding has been observed to affect tyre/pavement noise emission favourably, th...In Germany, diamond grinding is frequently used to improve the evenness and skid resistance of concrete pavement surfaces. Since diamond grinding has been observed to affect tyre/pavement noise emission favourably, the relationship among surface texture, concrete composition and noise emission of concrete pavement surfaces has been sys- tematically investigated. The simulation program SPERoN was used in a parameter study to investigate the main factors which affect noise emission. Based on the results of the simulations, textured concrete surfaces were produced by using a laboratory grinding machine. As well as the composition of the concrete, the thickness and spacing of the diamond blades were varied. The ability of the textured surfaces to reduce noise emission was assessed from the texture characteristics and air flow resistance of textured surfaces measured in the laboratory. It was found that concrete composition and, in particular, the spacing of the blades affected the reduction in noise emission considerably. The noise emission behaviour of numerous road sections was also considered in field investigations. The pavement surfaces had been textured by diamond grinding during the last years or decades. The results show that diamond grinding is able to provide good, durable noise- reducing properties. Several new pavement sections were investigated using thicknesses and spacings of the blades similar to those used in the laboratory to optimize noise emission reduction. It is concluded that diamond grinding is a good alternative to exposed aggregate concrete for the production of low-noise pavement surfaces.展开更多
Two algorithms for dwell time adjustment are evaluated under the same polishing conditions that involve tool and work distributions.Both methods are based on Preston’s hypothesis.The first method is a convolution alg...Two algorithms for dwell time adjustment are evaluated under the same polishing conditions that involve tool and work distributions.Both methods are based on Preston’s hypothesis.The first method is a convolution algorithm based on the Fast Fourier Transform.The second is an iterative method based on a constraint problem,extended from a one-dimensional formulation to address a two-dimensional problem.Both methods are investigated for their computational cost,accuracy,and polishing shapes.The convolution method has high accuracy and high speed.The constraint problem on the other hand is slow even when it requires larger memory and thus is more costly.However,unlike the other case a negative region in the polishing shape is not predicted here.Furthermore,new techniques are devised by combining the two methods.展开更多
文摘To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to help the operator grind a free surface with the high accuracy and the high productivity. To succeed in free surface grinding, the property of a ball type wheel must be known. Therefore, a basic study of free surface grinding with a ball type wheel is carried out based on the grinding center (GC). Some working points for achieving sufficient accuracy in free surface grinding are discussed. GSX-F is constructed using the patch division method and is used to test grinding. Reasonable results are obtained.
基金Supported by the Open L ab.Foundation of Educational Ministryof China
文摘The surface grinding temperature of the silicon wafer ground by diamond wheels is studied.Rudimentally,the properties of the surface grinding temperature generated by two grinding methods,ground by straight and cup wheels respectively,are analyzed.In addition,considering the effects of grain size and grinding depth on surface grinding temperature during these two grinding processes,significant results and conclusions are obtained from experimental research.
基金This project is supported by Provincial Natural Science Foundation of hianjin, China (NO.99380261l)
文摘The bearing is described by constrain matrix, and the spindle system of a NCsurface grinding machine is simplified as elastic-coupling beam, then modal synthesis method is usedto establish the dynamic model of beam. Moreover, the response of the end of rotor is analyzed, andthe natural frequency, principle mode and other dynamic characteristics of the coupling system arestudied, the law of bearing stiffness to coupling frequency and amplitude of rotor is also found.Finally, according to the actual condition, a dynamic absorber is designed. The simulation andexperimental results show that the amplitude of spindle can be declined effectively when the dynamicabsorber is attached.
文摘The paper submits a method to calculate thermal deformation and manufacture error in surface grinding. The author established a simplified temperature field model, and derived the thermal deformation of the ground workpiece. It is found that there exists not only a upwarp thermal deformation, but also a parallel expansion thermal deformation. A upwarp thermal deformation causes a concave shape error on the profile of the workpiece, and a parallel expansion thermal deformation causes a dimension error in height. The calculations of examples are given and compared with presented experiment data.
文摘This paper presents an experimental study that helps to determine the optimum exchanged diameter in surface grinding. In the paper, the cost of a surface grinding process was analysed. In the cost structure, the effects of the cost parameters such as machine tool hourly rate, grinding wheel cost were taken into account. Also, process parameters including the initial grinding wheel diameter, the wheel life, the dressing regime and so on were investigated. Based on the cost structure, the set up and the procedure of the experiment for finding the optimum diameter was pointed out. From experimental results, the optimum exchanged grinding wheel diameter was found. Grinding with the optimum exchanged diameter, both the grinding cost and grinding time can be reduced significantly.
文摘This paper introduces a new study on cost optimization of surface grinding. In the study, the effects of grinding parameters including the dressing regime parameters, the wheel life and the initial grinding wheel diameter on the exchanged grinding wheel diameter which were investigated. In addition, the influence of cost parameters including the machine tool hourly rate and the grinding wheel cost were taken into account. In order to find the optimum exchanged grinding wheel diameter, a cost optimization problem was built. From the results of the optimization problem, a model for determination of the optimum exchanged grinding wheel diameter was found. By using the optimum diameter, both the grinding cost and grinding time can be reduced significantly.
文摘An experimental study was carried out to investigat e the influence of temperatures on workpiece surface integrity in surface grinding of a cast nickel-based superalloy with alumina abrasive wheels. Temperatur e response at the wheel-workpiece interface was measured using a grindable foil /workpiece thermocouple. Specimens with different grinding temperatures were obt ained through changing grinding conditions including depth of cut, workpiece fee d speed, and coolant supply. Changes in surface roughness, residual stress, meta llographies, ground surface morphology, and micro hardness on the specimens were then analyzed. Bending fatigue tests were separately conducted at room temperat ure and 950oC in an effort to evaluate the influence of temperatures on the serv ice life of the ground specimens. A different burning color was found on the gro und workpiece surfaces when grinding temperatures are over a critical value. Alo ng with the emergence of burning color, roughness of the ground workpiece surfac e increased greatly compared with the surfaces without burning color, which was attributed to the plastically deformed coatings on the workpiece surface with el evated temperatures. Excepting the surface roughness, other items concerning the surface integrity of the ground workpiece were not affected by temperatures pro vided that grinding temperatures are not high enough to cause grinding cracks. B ased on the findings in this study, the grinding of the nickel-based superalloy can be divided into two stages in order to increase production efficiency, in which case the first stage is to reach an high material removal rate without concerning of the presence of burning color, whereas the second stage is to remo ve the plastically deformed coatings in order to decrease surface roughness.
基金This work was supported by the Natural Science Foundation of Hebei Province(Grant No.F2017202243)the Natural Science Foundation of Tianjin(Grant No.18JCTPJC54700)+1 种基金the State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2017-KF-15)the Science and Technology on Space Intelligent Control Laboratory(Grant No.ZDSYS-2017-08).
文摘To address the problems of thermal damage to a workpiece surface caused by the instantaneous high temperature during grinding and the difficulty in monitoring temperature in real time,the temperature field in the case of composite surface grinding by a cup wheel is studied.In order to predict the grinding temperature,considering material removal and grinding force distribution,a nonuniform heat source model with different function distributions in the circumferential and radial directions in the cylindrical coordinate system is first proposed;then,the analytical model is deduced and the numerical model of the temperature field is established based on the heat source model.The validation experiments for grinding temperature field are carried out using a high-definition infrared thermal imager and an artificial thermocouple.Compared to the temperature field based on the uniform heat source model,the results based on the non-uniform heat source model are in better agreement with the actual temperature field,and the temperature prediction error is reduced from approximately 23% to 6%.Thus,the present study provides a more accurate theoretical basis for preventing bums in cup wheel surface grinding.
基金the Hundred Outstanding Creative Talents Projects in Hebei University,Chinathe Project Program of Heavy Machinery Collaborative Innovation CenterChina and the National Natural Science Foundation of China(No.51171182)。
文摘A low carbon hypoeutectoid steel(0.19 wt%C)with proeutectoid ferrite and pearlite dual-components was subjected to surface plastic deformation via pipe inner surface grinding(PISG)at room temperature.The deformation microstructures for each component were systematically characterized along depth,and the patterns of structural evolution toward nanometer regime as well as the governing parameters were addressed.Proeutectoid ferrite grains were refined down to 17 nm,and the pattern covering a length scale of 4–5 orders of magnitude from micron-to nanometer-scale follows:formation of cellular dislocation structure(CDS),elongated dislocation structure(EDS),ultrafine lamellar structure(UFL)and finally the nanolaminated structure(NL).The pearlite experiences the deformation and refinement,and finally the transforming the ultrafine pearlite(UFP)into nanolaminated pearlite(NLP)with the ferrite lamellae as thin as 20 nm.Refinement for both UFL(UFP)and NL(NLP)can be realized via forming novel extended boundaries within ferrite lamellae.A critical lattice curvature of~2.8°is required for forming such extended boundary,corresponding to a minimum strain gradient of 0.25μm^(-1)for a 100 nm-thick lamella.Refinement below size limit(expressed by lamellar thickness d_Tin nm)is correlated with the strain gradient(χ,inμm^(-1))by:d_T=12.5/x.Refinement contributions from strain gradient caused by PISG processing and material heterogeneity were discussed.
文摘On going trend of miniaturization in electronic rel at ed parts, which is an average of two times in every 5~7 years introduce grindin g challenges. In grinding process, the surface waviness control of thin parts is an ardent task due to its warpage, induced by the high specific grinding energy (2~10 J/mm 3). Therefore, coolant is often used to avoid thermal damage, obtai n better surface integrity and to prolong wheel life. However coolant, the incomp ressibility media introduce high forces at the grinding zone creating dimensiona l as well as shape instability. In view of these situations chilled air was ap plied in place of conventional coolant. The chilled air is produced using a two -stage vapor compression refrigeration cycle with characteristics of: temperatu re -35 ℃, pressure 0.2~0.3 MPa and flow rate 0.4 m 3/min. Also traces of eco - oil mist that encompass the chilled air are supplied to the grinding zone. B oth chilled air and eco-oil mist are applied through two independent paths of a specially designed twin compartment nozzle for maximizing the penetration. This paper investigates the grinding characteristics of mold insert which is closer to M2 tool steel (component widely used in connector industries) when using chil led air as coolant media. Grinding experiments were conducted using a vitrified bond CBN wheel (B91N100V) and a surface grinder. Initial study was focussed on establishing the most suita ble clamping method for the thin mold insert. FEM analysis and grinding experime nt studies were performed to quantitatively analyze the clamping induced deflect ion. Waviness value (W t) of (24~62) μm was achieved for resin clampi n g whereas (4~8) μm, (4~6) μm were achieved for magnetic and wax clamping res pe ctively. Wax clamping is predominantly used in all the grinding experiments that characterize the grinding process, which use chilled air as the coolant media. Between 0.15 to 0.9 mm 3/mm.s of specific material removal rate, ground sur face temperature of mold insert was increased from 0.3 ℃ to 59.7 ℃ for chi lled air. For the similar grinding conditions with the coolant fluid an increase from 0.9 ℃ to 14.4 ℃ was recorded. With increase of specific material removal rate from 0.15 to 0.65 mm 3/mm.s, F t/F n ratio was increased from (0.2 to 0.4), (0.6 to 1.67) for wet coolant and chilled air respectively. Despite of high F t/F n ratio and ground surface temperature, chilled air method has shown a surface waviness, W t from (2 to 5.6) μm. Microstructure examination of chilled air produced ground surface was comparable to those of using coolant fluids. Surface finish, R a of (0.45~0.7) μm was achieved for mold insert . This work will enable to have clear understanding about the quantitative influe nce of chilled air as well as the clamping method against the surface waviness o f thin mold insert.
基金Financially supported by Natural Science Foundation of China(No.51874368).
文摘Mg-Cu alloys are promising antibacterial implant materials.However,their clinical applications have been impeded by their high initial biodegradation rate,which can be alleviated using nanotechnology by for example surface nanomodification to obtain a gradient nanostructured surface layer.The present work(i)produced a gradient nanostructured surface layer with a∼500µm thickness on a Mg-0.2 Cu alloy by a surface mechanical grinding treatment(SMGT),and(ii)studied the biodegradation behavior in Hank's solution.The initial biodegradation rate of the SMGTed samples was significantly lower than that of the unSMGTed original counterparts,which was attributed to the surface nanocrystallization,and the fragmentation and re-dissolution of Mg_(2)Cu particles in the surface of the SMGTed Mg-0.2 Cu alloy.Furthermore,the SMGTed Mg-0.2 Cu alloy had good antibacterial efficacy.This work creatively used SMGT technology to produce a high-performance Mg alloy implant material.
基金Project(2014CB644003)supported by the National Basic Research Program of ChinaProject(51321003)supported by the National Natural Science Foundation of ChinaProject(B06025)supported by"111"Project of China
文摘Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of as-received one,but moderate ductility between those of ultra-fine grained(UFG) and coarse-grained titanium.Tensile stress-strain curves of SMGT-treated titanium show double strain hardening regimes.The strain hardening rate(dσ/dε) decreases with increasing strain in tensile deformation.The high strain hardening rate at initial yielding is attributed to nano-to-micron-grained surface layer.The low strain hardening rate at large plastic strain regime primarily results from coarse-grained matrix.The SMGT-treated titanium shows a ductile fracture mode with a large number of dimples.The small size of dimples in the treated surface layer is due to the combination of the high strength and strain hardening exponent.The difference between dimple size in nano-to-micron-grained surface layer and coarse-grained matrix is discussed in terms of plastic zone size at the tip of crack in the SMGT-treated titanium.
基金Supported by National Natural Science Foundation of China ( No. 50275104) .
文摘To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic compensation. To better understand the characteristics of the grinding machine modulated with micropositioning workpiece table, the dynamic model of the grinding system was established with modal synthesis and Lagrange's equation methods. The grinding system was divided into five subsystems. For each subsystem, the generalized kinematic and potential energies were obtained. Accordingly the dynamic model of the grinding system was given in the modal domain. The waviness of the grinding process was achieved based on the wheel and workpiece vibration. A nonlinear proportional integral derivative (PID) controller with differential trackers was developed to realize dynamic control. The simulation results show that the machining accuracy of the workpiece can be effectively improved by utilizing the micropositioning workpiece table to implement dynamic compensation. An experimental test was carried out to verify the proposed method, and the waviness of the workpiece can be reduced from 0.46 μm to 0.10 μm.
文摘The most important grinding processes were realized in a single pass of the grinding wheel,such as continuous path controlled grinding (CPCG/Peelgrinding/HSP),CPCG with reduced contact of the grinding wheel (Quickpoint),single-pass longitudinal internal grinding,creep feed grinding (CFG),longitudinal cylindrical grinding with grinding wheels made of conventional abrasive materials and longitudinal internal cylindrical grinding using grinding wheels with zone-diversified structure.
基金financially supported by the National Key Research and Development Program of China (No. 2017YFA07007003)the National Natural Science Foundation of China (No. 51661019)+4 种基金the Program for Major Projects of Science and Technology in Gansu Province, China (No. 145RTSA004)the Hongliu First-class Discipline Construction Plan of Lanzhou University of Technology, Chinathe Incubation Program of Excellent Doctoral Dissertation, Lanzhou University of Technology, Chinathe Lanzhou University of Technology Excellent Students Studying Abroad Learning Exchange Fundthe State Key Laboratory of Cooperation and Exchange Fund。
文摘The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer.
基金co-supported by the National Natural Science Foundation of China (No. 51105024)the National Science and Technology Major Project of China (No. 2013ZX04001051)
文摘GH4169 is the main material for aero-cngine blades and integrated blisks. Because GH4169 has a poor milling performance, the profile precision and surtace integrity of blades and integrated blisks are difficult to be met by utilizing the conventional milling process, which directly influence the global performance and reliability of aero-engines. Through grinding experiments on parameters and surface integrity optimization, the helical cantilever grinding process utilizing a 300# CBN RB wheel is presented and applied in finish machining of GH4169 blades. The profile errors of the blade surface are within ±0.01 mm, the roughness is less than 0.4μm, the residual compressive stresses and the hardening rate are appropriate, there are no phenomena of burr and smearing with the grinding chips, and the leading/trailing edge can be smoothly connected with the suction/pressure surface. All the experimental results indicate that this grinding process is greatly suitable for the profile finish machining of GH4169 blades.
基金co-supported by the National Natural Science Foundation of China (Nos. 51235004, 51375235)the Fundamental Research Funds for the Central Universities (No. NE2014103) of ChinaPriority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) of China
文摘(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforcements, high strength and low thermal conductivity of Ti-6Al-4V alloy matrix. Grinding experiments with vitrified CBN wheels were conducted to analyze comparatively the grinding performance of PTMCs and Ti-6Al-4V alloy. Grinding force and force ratios, specific grinding energy, grinding temperature, surface roughness, ground surface appearance were discussed. The results show that the normal grinding force and the force ratios of PTMCs are much larger than that of Ti-6Al-4V alloy. Low depth of cut and high workpiece speed are generally beneficial to achieve the precision ground surface for PTMCs. The hard reinforcements of PTMCs are mainly removed in the ductile mode during grinding. However, the removal phenomenon of the reinforcements due to brittle fracture still exists, which contributes to the lower specific grinding energy and grinding temperature of PTMCs than Ti-6Al-4V alloy.
文摘In Germany, diamond grinding is frequently used to improve the evenness and skid resistance of concrete pavement surfaces. Since diamond grinding has been observed to affect tyre/pavement noise emission favourably, the relationship among surface texture, concrete composition and noise emission of concrete pavement surfaces has been sys- tematically investigated. The simulation program SPERoN was used in a parameter study to investigate the main factors which affect noise emission. Based on the results of the simulations, textured concrete surfaces were produced by using a laboratory grinding machine. As well as the composition of the concrete, the thickness and spacing of the diamond blades were varied. The ability of the textured surfaces to reduce noise emission was assessed from the texture characteristics and air flow resistance of textured surfaces measured in the laboratory. It was found that concrete composition and, in particular, the spacing of the blades affected the reduction in noise emission considerably. The noise emission behaviour of numerous road sections was also considered in field investigations. The pavement surfaces had been textured by diamond grinding during the last years or decades. The results show that diamond grinding is able to provide good, durable noise- reducing properties. Several new pavement sections were investigated using thicknesses and spacings of the blades similar to those used in the laboratory to optimize noise emission reduction. It is concluded that diamond grinding is a good alternative to exposed aggregate concrete for the production of low-noise pavement surfaces.
文摘Two algorithms for dwell time adjustment are evaluated under the same polishing conditions that involve tool and work distributions.Both methods are based on Preston’s hypothesis.The first method is a convolution algorithm based on the Fast Fourier Transform.The second is an iterative method based on a constraint problem,extended from a one-dimensional formulation to address a two-dimensional problem.Both methods are investigated for their computational cost,accuracy,and polishing shapes.The convolution method has high accuracy and high speed.The constraint problem on the other hand is slow even when it requires larger memory and thus is more costly.However,unlike the other case a negative region in the polishing shape is not predicted here.Furthermore,new techniques are devised by combining the two methods.