Liquid metal alloys(LMAs) are the potential candidates of thermal interface materials(TIMs) for electronics cooling.In the present work, buffer layers of Ag, Ti, Cu, Ni, Mo, and W were deposited on polished Cu plates ...Liquid metal alloys(LMAs) are the potential candidates of thermal interface materials(TIMs) for electronics cooling.In the present work, buffer layers of Ag, Ti, Cu, Ni, Mo, and W were deposited on polished Cu plates by DC magnetron sputtering, the contact angles of de-ionized water and diiodomethane on the buffer layers were measured by an easy drop shape analyzer and the surface free energies(SFEs) of the buffer layers were calculated by the Owens–Wendt–Kaelble equation. Samples were prepared by sandwiching the filmed Cu plates and LMAs. The thermal properties of the samples were measured by laser flash analysis method. The SFE of the buffer layer has a strong influence on the interface heat transfer, whereas the measurement temperature has no obvious effect on the thermal properties of the samples. As the SFE of the buffer layer increases, the wettability, thermal diffusivity, and thermal conductivity are enhanced, and the thermal contact resistance is decreased.展开更多
A robust phenomenon termed the Arctic Amplification(AA)refers to the stronger warming taking place over the Arctic compared to the global mean.The AA can be confirmed through observations and reproduced in climate mod...A robust phenomenon termed the Arctic Amplification(AA)refers to the stronger warming taking place over the Arctic compared to the global mean.The AA can be confirmed through observations and reproduced in climate model simulations and shows significant seasonality and inter-model spread.This study focuses on the influence of surface type on the seasonality of AA and its inter-model spread by dividing the Arctic region into four surface types:ice-covered,ice-retreat,ice-free,and land.The magnitude and inter-model spread of Arctic surface warming are calculated from the difference between the abrupt-4×CO_(2)and pre-industrial experiments of 17 CMIP6 models.The change of effective thermal inertia(ETI)in response to the quadrupling of CO_(2) forcing is the leading mechanism for the seasonal energy transfer mechanism,which acts to store heat temporarily in summer and then release it in winter.The ETI change is strongest over the ice-retreat region,which is also responsible for the strongest AA among the four surface types.The lack of ETI change explains the nearly uniform warming pattern across seasons over the ice-free(ocean)region.Compared to other regions,the ice-covered region shows the maximum inter-model spread in JFM,resulting from a stronger inter-model spread in the oceanic heat storage term.However,the weaker upward surface turbulent sensible and latent heat fluxes tend to suppress the inter-model spread.The relatively small inter-model spread during summer is caused by the cancellation of the inter-model spread in ice-albedo feedback with that in the oceanic heat storage term.展开更多
There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,a...There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications.展开更多
A simple and sensitive method for detection of captopril was established based on its obstructive effect on nanomaterial sur- face energy transfer (NSET). It was found that the acridine orange (AO) could be adsorb...A simple and sensitive method for detection of captopril was established based on its obstructive effect on nanomaterial sur- face energy transfer (NSET). It was found that the acridine orange (AO) could be adsorbed onto the surface of citrated-gold nanoparticles (AuNPs) through electrostatic interaction. Incidentally, the fluorescence of AO was quenched owing to the dipole-dipole interaction of NSET between AO fluorophore and the AuNPs. However, captopril could obstruct the occurrence of NSET between AO and AuNPs effectively with the formation of Au-S covalent bonds between it and the AuNPs. Consequently, AO molecules were moved away from the surface of AuNPs leading to a decline of the energy transfer efficiency. Moreover, the fluorescence of AO could be gradually restored with the addition of captopril. Under the optimal conditions, the recovered fluorescence intensity correlated linearly with the concentration of captopril in the range of 400 nmol/L-2.0μmol/L with a detection limit of 71 μmol/L. Besides, the proposed method was successfully applied for the detection of captopril in troches with the recovery of 93%-102% and the RSD lower than 2.24%. The results were in good agreement with those obtained from the HPLC method,展开更多
Owing to the importance of excited state dynamical relaxation, the excited state intramolecular proton transfer(ESIPT) mechanism for a novel compound containing dual hydrogen bond(abbreviated as "1-enol") is...Owing to the importance of excited state dynamical relaxation, the excited state intramolecular proton transfer(ESIPT) mechanism for a novel compound containing dual hydrogen bond(abbreviated as "1-enol") is studied in this work.Using density functional theory(DFT) and time-dependent density functional theory(TDDFT) method, the experimental electronic spectra can be reproduced for 1-enol compound. We first verify the formation of dual intramolecular hydrogen bonds, and then confirm that the dual hydrogen bond should be strengthened in the first excited state. The photo-excitation process is analyzed by using frontier molecular orbital(HOMO and LUMO) for 1-enol compound. The obvious intramolecular charge transfer(ICT) provides the driving force to effectively facilitate the ESIPT process in the S1 state. Exploration of the constructed S0-state and S1-state potential energy surface(PES) reveals that only the excited state intramolecular single proton transfer occurs for 1-enol system, which makes up for the deficiencies in previous experiment.展开更多
Surface-plasmon(SP) modes triggered on metal nanostructures were strongly coupled to the local restricted electronmagnetic field supported by a Fabry-Perot(F-P) cavity. This hybrid system provided an ideal platfor...Surface-plasmon(SP) modes triggered on metal nanostructures were strongly coupled to the local restricted electronmagnetic field supported by a Fabry-Perot(F-P) cavity. This hybrid system provided an ideal platform to study the interaction between SP and F-P resonators on nanoscales. However, the time-resolved transient energy transfer process is far from resolved. In this letter, we addressed this question by time-resolved femtosecond pump-probe technology and readily observed the transient energy transfer between SP and nanocavity resonant ener- gy. The interaction resulted in the emergence of hybrid splitting mode and the oscillating dynamics between upper and lower polariton branch(the split hybrid states). Our work may provide a well comprehension of strong coupling between SP modes and F-P resonator modes, and lay some groundwork for many future photonic applications.展开更多
Outbreaks of infectious viruses offer a formidable challenge to public healthcare systems and early detection of viruses is essential for preventing virus propagation.In this work,an ultrasensitive plasmon-enhanced fl...Outbreaks of infectious viruses offer a formidable challenge to public healthcare systems and early detection of viruses is essential for preventing virus propagation.In this work,an ultrasensitive plasmon-enhanced fluorescence resonance energy transfer(FRET)biosensor based on core-shell upconversion nanoparticle(csUCNP)and gold nanoparticle(AuNP)for accurate detection of SARS-CoV-2 viral RNA is presented.In this biodetection assay,the Tm^(3+)/Er^(3+)co-doped csUCNP NaGdF_(4):Yb/Tm@NaYF_(4):Yb/Er acts as an energy donor and AuNP serves as an energy acceptor.The upconversion emission of Tm^(3+)and the design of the core-shell structure led to a simultaneous surface plasmon effect of AuNP.The localized surface plasmon resonance(LSPR)arising from collective oscillations of free electrons significantly enhanced FRET efficiency between Er^(3+)and AuNP.The as-prepared biosensor obtained a limit of detection(LOD)as low as 750 aM,indicating that the integration of FRET and surface plasmon into one biodetection assay significantly boosted the sensitivity of the biosensor.In addition,samples extracted from clinical samples are also utilized to validate the effectiveness of the biosensor.Therefore,this innovative plasmon-enhanced FRET biosensor based on Tm^(3+)/Er^(3+)co-doped csUCNP may pave the way for rapid and accurate biodetection applications.展开更多
特高压(ultra high voltage,UHV)交流与直流线路同廊道运行时带电作业区域电压高、场强大,交直流混合电场比单一电场更为复杂。为确保作业人员安全,结合实际±1100 kV直流和1000 kV交流线路,建立了包含输电导线、杆塔及带电作业人...特高压(ultra high voltage,UHV)交流与直流线路同廊道运行时带电作业区域电压高、场强大,交直流混合电场比单一电场更为复杂。为确保作业人员安全,结合实际±1100 kV直流和1000 kV交流线路,建立了包含输电导线、杆塔及带电作业人员的三维计算模型,通过分析开展带电作业时人员的体表混合场强、电位转移电流及暂态能量,对作业人员安全防护进行研究。结果表明:随着作业人员不断接近直流线路,体表场强受交流线路影响越明显,最高可使作业人员体表场强增大约9%,达到1920 kV/m;交流线路的存在将导致电位转移电流增长约7%,但对暂态能量影响较小。通过对特高压线路不停电检修所减少的碳排放量进行进一步计算,验证了特高压带电作业对减少碳排放具有促进作用。展开更多
Researches have investigated the formation, transportation and spreading of bubble on solid surface with specific wettability. However, bubble transfer on wettability-heterogeneous surfaces has been rarely reported, w...Researches have investigated the formation, transportation and spreading of bubble on solid surface with specific wettability. However, bubble transfer on wettability-heterogeneous surfaces has been rarely reported, which also plays significant role in water electrolysis, heat transfer, micro-bubble collection, etc.In this work, we carefully investigate the behavior of bubble transfer from the aerophobic or aerophilic region to the superaerophilic region through fabricating the wettability-heterogenous surfaces. Surface energy was elucidated to be transformed to the kinetic energy during bubble transfer process. Theoretical analysis on the average velocity of bubble transfer was consistent with the experimental results.The influence of wettability of solid substrate, bubble volume and superaerophilic stripe width on bubble transfer are carefully investigated. Moreover, wettability-heterogeneous surfaces were explored to be applied in micro-CO_(2) bubble collection and H_(2) bubble removement in water splitting.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11874191)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2016FM38)
文摘Liquid metal alloys(LMAs) are the potential candidates of thermal interface materials(TIMs) for electronics cooling.In the present work, buffer layers of Ag, Ti, Cu, Ni, Mo, and W were deposited on polished Cu plates by DC magnetron sputtering, the contact angles of de-ionized water and diiodomethane on the buffer layers were measured by an easy drop shape analyzer and the surface free energies(SFEs) of the buffer layers were calculated by the Owens–Wendt–Kaelble equation. Samples were prepared by sandwiching the filmed Cu plates and LMAs. The thermal properties of the samples were measured by laser flash analysis method. The SFE of the buffer layer has a strong influence on the interface heat transfer, whereas the measurement temperature has no obvious effect on the thermal properties of the samples. As the SFE of the buffer layer increases, the wettability, thermal diffusivity, and thermal conductivity are enhanced, and the thermal contact resistance is decreased.
基金the National Natural Science Foundation of China(Grant No.41922044)the National Key Research and Development Program of China(Grants Nos.2019YFA0607000,2022YFE0106300)+2 种基金the National Natural Sci-ence Foundation of China(Grants Nos.42075028 and 42222502)Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2021SP302)the fundamental research funds for the Norges Forskningsråd(Grant No.328886).
文摘A robust phenomenon termed the Arctic Amplification(AA)refers to the stronger warming taking place over the Arctic compared to the global mean.The AA can be confirmed through observations and reproduced in climate model simulations and shows significant seasonality and inter-model spread.This study focuses on the influence of surface type on the seasonality of AA and its inter-model spread by dividing the Arctic region into four surface types:ice-covered,ice-retreat,ice-free,and land.The magnitude and inter-model spread of Arctic surface warming are calculated from the difference between the abrupt-4×CO_(2)and pre-industrial experiments of 17 CMIP6 models.The change of effective thermal inertia(ETI)in response to the quadrupling of CO_(2) forcing is the leading mechanism for the seasonal energy transfer mechanism,which acts to store heat temporarily in summer and then release it in winter.The ETI change is strongest over the ice-retreat region,which is also responsible for the strongest AA among the four surface types.The lack of ETI change explains the nearly uniform warming pattern across seasons over the ice-free(ocean)region.Compared to other regions,the ice-covered region shows the maximum inter-model spread in JFM,resulting from a stronger inter-model spread in the oceanic heat storage term.However,the weaker upward surface turbulent sensible and latent heat fluxes tend to suppress the inter-model spread.The relatively small inter-model spread during summer is caused by the cancellation of the inter-model spread in ice-albedo feedback with that in the oceanic heat storage term.
基金supported by the National Key Research and Development Program of China(No.2022YFB4602600)the National Natural Science Foundation of China(No.52221001)Hunan Provincial Innovation Foundation for Postgraduate(No.CX20220406)。
文摘There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications.
基金the National Natural Science Foundation of China(21175109)the special fund of Chongqing key laboratory(CSTC)for financial assistance
文摘A simple and sensitive method for detection of captopril was established based on its obstructive effect on nanomaterial sur- face energy transfer (NSET). It was found that the acridine orange (AO) could be adsorbed onto the surface of citrated-gold nanoparticles (AuNPs) through electrostatic interaction. Incidentally, the fluorescence of AO was quenched owing to the dipole-dipole interaction of NSET between AO fluorophore and the AuNPs. However, captopril could obstruct the occurrence of NSET between AO and AuNPs effectively with the formation of Au-S covalent bonds between it and the AuNPs. Consequently, AO molecules were moved away from the surface of AuNPs leading to a decline of the energy transfer efficiency. Moreover, the fluorescence of AO could be gradually restored with the addition of captopril. Under the optimal conditions, the recovered fluorescence intensity correlated linearly with the concentration of captopril in the range of 400 nmol/L-2.0μmol/L with a detection limit of 71 μmol/L. Besides, the proposed method was successfully applied for the detection of captopril in troches with the recovery of 93%-102% and the RSD lower than 2.24%. The results were in good agreement with those obtained from the HPLC method,
基金Project supported by the National Natural Science Foundation of China(Grant No.11404112)the Funding Scheme for Young Teachers in Colleges and Universities in Henan Province,China(Grant No.2017GGJS077)the Key Scientific Research Project of Colleges and Universities of Henan Province,China(Grant No.18A140023)
文摘Owing to the importance of excited state dynamical relaxation, the excited state intramolecular proton transfer(ESIPT) mechanism for a novel compound containing dual hydrogen bond(abbreviated as "1-enol") is studied in this work.Using density functional theory(DFT) and time-dependent density functional theory(TDDFT) method, the experimental electronic spectra can be reproduced for 1-enol compound. We first verify the formation of dual intramolecular hydrogen bonds, and then confirm that the dual hydrogen bond should be strengthened in the first excited state. The photo-excitation process is analyzed by using frontier molecular orbital(HOMO and LUMO) for 1-enol compound. The obvious intramolecular charge transfer(ICT) provides the driving force to effectively facilitate the ESIPT process in the S1 state. Exploration of the constructed S0-state and S1-state potential energy surface(PES) reveals that only the excited state intramolecular single proton transfer occurs for 1-enol system, which makes up for the deficiencies in previous experiment.
基金Supported by the National Basic Research Program of ChinafNos.2014CB921302, 2011CB013003), the National Natural Science Foundation, of China(Nos.21273096, 61378053) and the Doctoral Fund of Ministry of Education of China(No.20130061110048).
文摘Surface-plasmon(SP) modes triggered on metal nanostructures were strongly coupled to the local restricted electronmagnetic field supported by a Fabry-Perot(F-P) cavity. This hybrid system provided an ideal platform to study the interaction between SP and F-P resonators on nanoscales. However, the time-resolved transient energy transfer process is far from resolved. In this letter, we addressed this question by time-resolved femtosecond pump-probe technology and readily observed the transient energy transfer between SP and nanocavity resonant ener- gy. The interaction resulted in the emergence of hybrid splitting mode and the oscillating dynamics between upper and lower polariton branch(the split hybrid states). Our work may provide a well comprehension of strong coupling between SP modes and F-P resonator modes, and lay some groundwork for many future photonic applications.
基金Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:C5110-20GFPolyU Internal Research Fund,Grant/Award Numbers:1-CD4S,1-W21GShenzhen-Hong Kong-Macao Technology Research Programme Fund,Grant/Award Number:SGDX2020110309260000。
文摘Outbreaks of infectious viruses offer a formidable challenge to public healthcare systems and early detection of viruses is essential for preventing virus propagation.In this work,an ultrasensitive plasmon-enhanced fluorescence resonance energy transfer(FRET)biosensor based on core-shell upconversion nanoparticle(csUCNP)and gold nanoparticle(AuNP)for accurate detection of SARS-CoV-2 viral RNA is presented.In this biodetection assay,the Tm^(3+)/Er^(3+)co-doped csUCNP NaGdF_(4):Yb/Tm@NaYF_(4):Yb/Er acts as an energy donor and AuNP serves as an energy acceptor.The upconversion emission of Tm^(3+)and the design of the core-shell structure led to a simultaneous surface plasmon effect of AuNP.The localized surface plasmon resonance(LSPR)arising from collective oscillations of free electrons significantly enhanced FRET efficiency between Er^(3+)and AuNP.The as-prepared biosensor obtained a limit of detection(LOD)as low as 750 aM,indicating that the integration of FRET and surface plasmon into one biodetection assay significantly boosted the sensitivity of the biosensor.In addition,samples extracted from clinical samples are also utilized to validate the effectiveness of the biosensor.Therefore,this innovative plasmon-enhanced FRET biosensor based on Tm^(3+)/Er^(3+)co-doped csUCNP may pave the way for rapid and accurate biodetection applications.
基金the National Natural Science Foundation (Nos. 22175011, 22005015)。
文摘Researches have investigated the formation, transportation and spreading of bubble on solid surface with specific wettability. However, bubble transfer on wettability-heterogeneous surfaces has been rarely reported, which also plays significant role in water electrolysis, heat transfer, micro-bubble collection, etc.In this work, we carefully investigate the behavior of bubble transfer from the aerophobic or aerophilic region to the superaerophilic region through fabricating the wettability-heterogenous surfaces. Surface energy was elucidated to be transformed to the kinetic energy during bubble transfer process. Theoretical analysis on the average velocity of bubble transfer was consistent with the experimental results.The influence of wettability of solid substrate, bubble volume and superaerophilic stripe width on bubble transfer are carefully investigated. Moreover, wettability-heterogeneous surfaces were explored to be applied in micro-CO_(2) bubble collection and H_(2) bubble removement in water splitting.