期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell 被引量:6
1
作者 Kaili Wang Fei Wang +1 位作者 Yunfeng Zhao Weiqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期251-261,I0008,共12页
The development of advanced electrocatalysts for efficient catalyzing ethanol oxidation reaction(EOR)and oxygen reduction reaction(ORR) is significant for direct ethanol fuel cells(DEFCs).However,in many previous stud... The development of advanced electrocatalysts for efficient catalyzing ethanol oxidation reaction(EOR)and oxygen reduction reaction(ORR) is significant for direct ethanol fuel cells(DEFCs).However,in many previous studies,the major difficulties including lower utilization efficiency and weaker anti-CO-poison ability of Pt hamper the practical testing of such DEFCs,Herein,ternary Pt22Pd27C51 ultrathin(~5 nm)NWs are fabricated via a facile surfactant-free strategy.The surface and electronic structures of Pt22Pd27Cu51 NWs are further tailored via acid-etching treatment.The resulted PtPdCu NWs with an optimal atomic Pt/Pd/Cu ratio of 36:41:23 display excellent specific activities towards EOR(4.38 mA/cm^(2))and ORR(1.16 mA/cm^(2)),which are 19.8-and 5.7-folds larger than that of Pt/C,respectively.A singlecell was fabricated using Pt36Pd41Cu23 NWs as electrocatalyst in both anode and cathode with Pt loading of 1.2 mgpt/cm^(2).The power density measured at 80 ℃ is 21.7 mW/cm^(2),which is ~3.9 folds enhancement relative to that fabricated by using Pt/C(2 mgPt/cm^(2)).The enhanced catalytic performance of Pt36Pd41Cu23NWs could be attributed to that synergistic effect between Pt,Pd and Cu enhances CO anti-poisoning ability and promotes the C-C bond cleavage.This work provides a promising strategy for developing efficient electrocatalysts for DEFCs. 展开更多
关键词 Acidic DEFCs Nanowire networks materials Platinum-palladium-copper surface-component tailoring
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部