期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Flow characteristics and regime transition of aqueous foams in porous media over a wide range of quality,velocity,and surfactant concentration 被引量:1
1
作者 Bin-Fei Li Meng-Yuan Zhang +3 位作者 Zhao-Min Li Anthony Kovscek Yan Xin Bo-Liang Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1044-1052,共9页
Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T... Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams. 展开更多
关键词 Foam flow regime and transition Porous media Pressure gradient Flow velocity surfactant concentration Foam quality
下载PDF
Study on Optimization of Polymer Enhanced Foam Formulation System
2
作者 Meinan Wang Yuejie Wang +2 位作者 Hongyou Zhang Xiaoyan Yang Xiaoming Chen 《Engineering(科研)》 2023年第11期742-748,共7页
Taking the pilot test area of polymer enhanced foam flooding in Y oilfield as the prototype, a numerical core model was established, and the polymer enhanced foam formulation system was optimized by analyzing the resi... Taking the pilot test area of polymer enhanced foam flooding in Y oilfield as the prototype, a numerical core model was established, and the polymer enhanced foam formulation system was optimized by analyzing the resistance factor and the change rule of oil recovery of different formulation systems. Research shows that the higher the polymer concentration, the greater the resistance factor, and the more obvious the sealing effect formed in the formation. The concentration of surfactant has a greater impact on the resistance factor. With the increase of surfactant concentration, the resistance factor increases significantly, and the plugging effect of foam agent on core is significantly enhanced. With the increase of gas-liquid ratio, the resistance factor first increases and then decreases. When the gas-liquid ratio is 1:1, the resistance is the largest, and the foam agent has the strongest plugging effect on the core. The optimal formula system of polymer enhanced foam flooding in Y oilfield is: polymer concentration is 1200 mg/L, surfactant concentration is 0.25 wt%, gas-liquid ratio is 1:1. 展开更多
关键词 Enhanced Foam Polymer concentration surfactant concentration Gas-Liquid Ratio
下载PDF
Surface nanobubbles on the hydrophobic surface and their implication to flotation 被引量:1
3
作者 Chenwei Li Danlong Li +2 位作者 Xin Li Ming Xu Haijun Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第8期1493-1501,共9页
Nanobubbles play a potential role in the application of the flotation of fine particles.In this work,the identification of nanoentities was performed with a contact mode atomic force microscope(AFM).Moreover,the influ... Nanobubbles play a potential role in the application of the flotation of fine particles.In this work,the identification of nanoentities was performed with a contact mode atomic force microscope(AFM).Moreover,the influences of setpoint ratio and amplitude of the cantilever and the responses of the formed surface nanobubbles to the fluctuation of pH,salt concentration,and surfactant concentration in the slurry were respectively studied.Nanobubbles were reported on the highly oriented pyrolytic graphite(HOPG)surface as the HOPG was immersed in de-ionized water under ambient temperature.The coalescence of nanobubbles occurred under contact mode,which provides strong evidence of the gaseous nature of these nanostructures on HOPG.The measuring height of the surface nanobubbles decreased with the setpoint ratio.The changes in the pH and concentration of methyl isobutyl carbinol(MIBC)show a negligible influence on the lateral size and height of the preex-isting surface nanobubbles.The addition of LiCl results in a negligible change of the lateral size;however,an obvious change is noticed in the height of surface nanobubbles.The results are expected to provide a valuable reference in understanding the properties of surface nanobubbles and in the design of nanobubble-assisted flotation processes. 展开更多
关键词 surface nanobubbles FLOTATION PH salt concentration surfactant concentration
下载PDF
Prediction on Critical Micelle Concentration of Nonionic Surfactants in Aqueous Solution:Quantitative Structure-Property Relationship Approach
4
作者 王正武 黄东阳 +1 位作者 宫素萍 李干佐 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2003年第12期1573-1579,共7页
In order to predict the critical micelle concentration (cmc) of nonionic surfactants in aqueous solution,a quantitative structure-property relationship (QSPR) was found for 77 nonionic surfactants belonging to eight s... In order to predict the critical micelle concentration (cmc) of nonionic surfactants in aqueous solution,a quantitative structure-property relationship (QSPR) was found for 77 nonionic surfactants belonging to eight series. The best-regressed model contained four quantum-chemical descriptors,the heat of formation (ΔH),the molecular dipole moment (D),the energy of the lowest unoccupied molecular orbital (E_ LUMO ) and the energy of the highest occupied molecular orbital (E_ HOMO ) of the surfactant molecule; two constitutional descriptors,the molecular weight of surfactant (M) and the number of oxygen and nitrogen atoms (n_ ON ) of the hydrophilic fragment of surfactant molecule; and one topological descriptor,the Kier & Hall index of zero order (KH0) of the hydrophobic fragment of the surfactant. The established general QSPR between lg(cmc) and the descriptors produced a relevant coefficient of multiple determination:R 2=0.986. When cross terms were considered,the corresponding best model contained five descriptors E_ LUMO ,D,KH0,M and a cross term n_ ON ·KH0,which also produced the same coefficient as the seven-parameter model. 展开更多
关键词 quantitative structure-property relationship critical micelle concentration nonionic surfactant
原文传递
Hydrophobic terminal group of surfactant initiating micellization as revealed by^1H NMR spectroscopy
5
作者 Gang-Jin Yu Xiao-Ying Chen +2 位作者 Shi-Zhen Mao Mai-Li Liu You-Ru Du 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第7期1413-1416,共4页
The critical aggregation concentration(CAC) of four with three kinds of conventional surfactants, namely,two cationic surfactants [hexadecyltrimethyl ammonium bromide(CTAB) and tetradecyltrimethyl ammonium bromide... The critical aggregation concentration(CAC) of four with three kinds of conventional surfactants, namely,two cationic surfactants [hexadecyltrimethyl ammonium bromide(CTAB) and tetradecyltrimethyl ammonium bromide(TTAB)], one anionic surfactant [sodium dodecyl sulfate(SDS)], and a nonionic surfactant [Triton X-100(TX-100)], were determined by variation of ^1H chemical shifts with surfactant concentrations. Results show that the CAC values of protons at different positions of the same molecule are different, and those of the terminal methyl protons are the lowest, respectively, which suggests that the terminal groups of the alkyl chains aggregates first during micellization. Measurement of the transverse relaxation time(T2) of different protons in SDS also show that the terminal methyl protons start to decrease with the increase in concentration first, which supports the above mentioned tendency. 展开更多
关键词 1H NMR surfactants Critical aggregation concentration Hydrophobic terminal group Micellization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部