This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flood...This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flooding to SP flooding.The conglomerate reservoir of the Badaowan Formation in the seventh block of the Karamay Oilfield is selected as the research object to reveal the start-up mechanism of residual oil and determine the controlling factors of oil recovery through SP flooding experiments of natural cores and microetching models.The experimental results are used to identify four types of residual oil after water flooding in this conglomerate reservoir with a complex pore structure:oil droplets retained in pore throats by capillary forces,oil cluster trapped at the junction of pores and throats,oil film on the rock surface,isolated oil in dead-ends of flow channel.For the four types of residual oil identified,the SP solution can enhance oil recovery by enlarging the sweep volume and improving the oil displacement efficiency.First,the viscosity-increasing effect of the polymer can effectively reduce the permeability of the displacement liquid phase,change the oil-water mobility ratio,and increase the water absorption.Furthermore,the stronger the shear drag force of the SP solution,the more the crude oil in a porous medium is displaced.Second,the surfactant can change the rock wettability and reduce the absorption capacity of residual oil by lowering interfacial tension.At the same time,the emulsification further increases the viscosity of the SP solution,and the residual oil is recovered effectively under the combined effect of the above two factors.For the four start-up mechanisms of residual oil identified after water flooding,enlarging the sweep volume and improving the oil displacement efficiency are interdependent,but their contribution to enhanced oil recovery are different.The SP flooding system primarily enlarges the sweep volume by increasing viscosity of solution to start two kinds of residual oil such as oil droplet retained in pore throats and isolated oil in dead-ends of flow channel,and primarily improves the oil displacement efficiency by lowing interfacial tension of oil phase to start two kinds of residual oil such as oil cluster trapped at the junction of pores and oil film on the rock surface.On this basis,the experimental results of the oil displacement from seven natural cores show that the pore structure of the reservoir is the main factor influencing water flooding recovery,while the physical properties and original oil saturation have relatively little influence.The main factor influencing SP flooding recovery is the physical and chemical properties of the solution itself,which primarily control the interfacial tension and solution viscosity in the reservoir.The residual oil saturation after water flooding is the material basis of SP flooding,and it is the second-most dominant factor controlling oil recovery.Combined with the analysis results of the influencing factors and reservoir parameters,the water flooding recovery index and SP flooding recovery index are defined to further establish quantitative calculation models of oil recovery under different displacement modes.The average relative errors of the two models are 4.4%and 2.5%,respectively;thus,they can accurately predict the oil recovery of different displacement stages and the ultimate reservoir oil recovery.展开更多
Carboxymethyl cellulose(CMC)has emerged in oil and gas industries as a superior substitution to the conventional HPAM and xanthan gum(XG)for high viscosity polymer flooding application.In this study,the combined effec...Carboxymethyl cellulose(CMC)has emerged in oil and gas industries as a superior substitution to the conventional HPAM and xanthan gum(XG)for high viscosity polymer flooding application.In this study,the combined effect of conventional surfactant,sodium dodecylbenzenesulfonate(SDBS)and CMC for potential surfactant-polymer(SP)flooding in enhanced oil recovery(EOR)has been investigated.Thereafter,SDBS–CMC interaction and the functional groups present in CMC were appropriately identified.The presence of various C–O bonds signifies the existence of carboxymethyl group which greatly influence the rheological properties of CMC solution.The behaviour of SDBS–CMC was characterized by their viscosity,shear rate,solubilization,wettability,and surface tension.Tertiary flooding utilizing SDBS-CMC was performed and compared to commercial SDBS-XG SP flooding.The results indicate several SDBS-CMC combinations are favourable for EOR application.Solution viscosity shows direct relationship with CMC concentrations.Consequently,at any given SDBS concentrations,significant increment was observed at 0.3 wt%and above.However,the trend displayed inconclusive relation to SDBS fractions.Majority of the SDBS-CMC combinations generate Winsor III emulsions particularly at CMC of 0.2 and 0.3 wt%,while Type II were observed in few combinations.Increasing CMC concentrations increased the contact angle,while gradual reductions were observed with SDBS concentrations.The gradual reduction in surface tension was highly influenced by the addition of CMC rather than SDBS.A novel combination of 0.3 wt%SDBS and 0.4 wt%CMC possessed an encouraging criterion in term of viscosity,solubilization,and surface tension reduction for EOR application.Flooding experiment from several SDBS-CMC combinations proved to recover additional oil ranging 16.4–20.2%of oil initially in place(OIIP).The trend in incremental oil recovery is similar to that of when utilising SDBS-XG.展开更多
To improve effectiveness of ASP flooding, it is necessary to establish a reliable parameter design and tracking adjustment method to monitor the process of oil displacement. A differential wide field electromagnetic m...To improve effectiveness of ASP flooding, it is necessary to establish a reliable parameter design and tracking adjustment method to monitor the process of oil displacement. A differential wide field electromagnetic method was proposed and applied to the ASP displacement monitoring test in a block of the Daqing Oilfield. In the process of ASP flooding, the electromagnetic field was measured many times. The data acquired before the ASP flooding were set as the background field, and the resistivity model was obtained by inversion. Then, the resistivity data were calibrated by logging data and the resistivity model was established. Finally, the range and front of ASP flooding were deduced with the residual gradient from the spatial domain first-order difference of the resistivity model. Production data of well groups in this block have proved that this method can work out the range and front of ASP flooding accurately, providing support for optimization of ASP flooding parameters.展开更多
The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing ...The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100.展开更多
To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a...To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.展开更多
This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil...This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil recovery(EOR)in carbonate reservoirs.Thermal gravimetric analysis(TGA)tests were conducted initially in order to evaluate the properties of tragacanth gum.Subsequently,scanning electron microscopy(SEM)and energy-dispersive X-ray(EDX)tests were used to detect the structure of clay particles.In various scenarios,the effects of natural NPs and polymer on the wettability alteration,interfacial tension(IFT)reduction,viscosity improvement,and oil recovery were investigated through contact angle system,ring method,Anton Paar viscometer,and core flooding tests,respectively.The entire experiment was conducted at 25,50,and 75℃,respectively.According to the experimental results,the clay minerals alone did not have a significant effect on viscosity,but the addition of minerals to the polymer solution leads to the viscosity enhancement remarkably,resulting mobility ratio improvement.Among clay NPs,the combination of natural polymer and kaolinite results in increased viscosity at all temperatures.Considerable wettability alteration was also observed in the case of natural polymer and illite NPs.Illite in combination with natural polymer showed an ability in reducing IFT.Finally,the results of displacement experiments revealed that the combination of natural polymer and kaolinite could be the best option for EOR due to its substantial ability to improve the recovery factor.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
Abiotic stress,including flooding,seriously affects the normal growth and development of plants.Mulberry(Morus alba),a species known for its flood resistance,is cultivated worldwide for economic purposes.The transcrip...Abiotic stress,including flooding,seriously affects the normal growth and development of plants.Mulberry(Morus alba),a species known for its flood resistance,is cultivated worldwide for economic purposes.The transcriptomic analysis has identified numerous differentially expressed genes(DEGs)involved in submergence tolerance in mulberry plants.However,a comprehensive analyses of metabolite types and changes under flooding stress in mulberry remain unreported.A non-targeted metabolomic analysis utilizing liquid chromatographytandem mass spectrometry(LC-MS/MS)was conducted to further investigate the effects of flooding stress on mulberry.A total of 1,169 metabolites were identified,with 331 differentially accumulated metabolites(DAMs)exhibiting up-regulation in response to flooding stress and 314 displaying down-regulation.Pathway enrichment analysis identified significant modifications in many metabolic pathways due to flooding stress,including amino acid biosynthesis and metabolism and flavonoid biosynthesis.DAMs and DEGs are significantly enriched in the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways for amino acid,phenylpropanoid and flavonoid synthesis.Furthermore,metabolites such as methyl jasmonate,sucrose,and D-mannose 6-phosphate accumulated in mulberry leaves post-flooding stress.Therefore,genes and metabolites associated with these KEGG pathways are likely to exert a significant influence on mulberry flood tolerance.This study makes a substantial contribution to the comprehension of the underlying mechanisms implicated in the adaptation of mulberry plants to submergence.展开更多
This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 yea...This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.展开更多
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f...Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.展开更多
Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the inje...Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.展开更多
This study aims to further enhance the oil recovery of reservoirs in the Zhong-2 Block of the Gudao Oilfield by identifying the most effective microbial-flooding activator systems and applying them in the field.We beg...This study aims to further enhance the oil recovery of reservoirs in the Zhong-2 Block of the Gudao Oilfield by identifying the most effective microbial-flooding activator systems and applying them in the field.We began by analyzing the structure of the reservoirs'endogenous microbial communities to understand the potential impact of microbial flooding.This was followed by determining commonly used activator systems based on their abilities to stimulate oil-displacement functional bacteria.Through laboratory experiments on oil displacement efficiency and sweep characteristics,we determined the optimal activator injection method(injection ratio)and the requisite bacterial concentration for maximal microbial-flooding efficacy.Finally,we selected the optimal activator systems and applied them to field tests.Our findings suggest the target block is highly receptive to microbial-flooding.In terms of performance,the activator systems ranked as No.3>No.4>No.1>No.2.Interestingly,a deep activator system,when compared to the top-performing No.3 system,exhibited a higher bacterial concentration peak and longer peaking duration.Optimal oil displacement effects were observed at a 1:4 vol ratio between the No.3 activator and deep activator systems,with bacterial concentrations of up to 106 cells/mL or above.Field tests with the selected activator systems,following a specific injection protocol,demonstrated a notable increase in oil production and a reduction in water cut.展开更多
Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,t...Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.展开更多
BACKGROUND Superimposed high-frequency jet ventilation(SHFJV)is suitable for respiratory motion reduction and essential for effective lung tumor ablation.Fluid filling of the target lung wing one-lung flooding(OLF)is ...BACKGROUND Superimposed high-frequency jet ventilation(SHFJV)is suitable for respiratory motion reduction and essential for effective lung tumor ablation.Fluid filling of the target lung wing one-lung flooding(OLF)is necessary for therapeutic ultrasound applications.However,whether unilateral SHFJV allows adequate hemodynamics and gas exchange is unclear.AIM To compared SHFJV with pressure-controlled ventilation(PCV)during OLF by assessing hemodynamics and gas exchange in different animal positions.METHODS SHFJV or PCV was used alternatingly to ventilate the non-flooded lungs of the 12 anesthetized pigs during OLF.The animal positions were changed from left lateral position to supine position(SP)to right lateral position(RLP)every 30 min.In each position,ventilation was maintained for 15 min in both modalities.Hemodynamic variables and arterial blood gas levels were repeatedly measured.RESULTS Unilateral SHFJV led to lower carbon dioxide removal than PCV without abnormally elevated carbon dioxide levels.SHFJV slightly decreased oxygenation in SP and RLP compared with PCV;the lowest values of PaO_(2) and PaO_(2)/FiO_(2) ratio were found in SP[13.0;interquartile range(IQR):12.6-5.6 and 32.5(IQR:31.5-38.9)kPa].Conversely,during SHFJV,the shunt fraction was higher in all animal positions(highest in the RLP:0.30).CONCLUSION In porcine model,unilateral SHFJV may provide adequate ventilation in different animal positions during OLF.Lower oxygenation and CO_(2) removal rates compared to PCV did not lead to hypoxia or hypercapnia.SHFJV can be safely used for lung tumor ablation to minimize ventilation-induced lung motion.展开更多
Currently,limited studies of immiscible water-alternating-CO_(2)(imWACO_(2))flooding focus on the impact of reservoir heterogeneity on reservoir development outcomes.Given this,using the heterogeneous reservoirs in th...Currently,limited studies of immiscible water-alternating-CO_(2)(imWACO_(2))flooding focus on the impact of reservoir heterogeneity on reservoir development outcomes.Given this,using the heterogeneous reservoirs in the Gao 89-1 block as a case study,this study conducted slab core flooding experiments and numerical simulations to assess the impact of reservoir heterogeneity on imWACO_(2)flooding efficiency.It can be concluded that imWACO_(2)flooding can enhance the sweep volume and oil recovery compared to continuous CO_(2)flooding.As the permeability difference increases,the difference in the swept volume between zones/layers with relatively high and low permeability increases.To optimize the exploitation of reservoirs in the Gao 89-1 block,the optimal timing and CO_(2)injection rate for imWACO_(2)flooding are determined at water cut of 40%and 10000 m^(3)/d,respectively.A short injection-production semi-period,combined with multiple cycles of water and CO_(2)injection alternations,is beneficial for enhanced oil recovery from imWACO_(2)flooding.展开更多
The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coast...The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coastal lowland with land subsidence.Therefore,the risk assessment of such inundation for these areas is of great significance for the sustainable socio-economic development.In this paper,the authors use Elevation-Area method and Regional Ocean Model System(ROMS)model to assess the risk of the inundation of Bohai Bay by storm surge.The simulation results of Elevation-Area method show that either a 50-year or 100-year storm surge can inundate coastal areas exceeding 8000 km^(2);the numerical simulation results based on hydrodynamics,considering ground friction and duration of the storm surge high water,show that a 50-year or 100-year storm surge can only inundate an area of over 2000 km^(2),which is far less than 8000 km^(2);while,when taking into account the land subsidence and sea level rise,the very inundation range will rapidly increase by 2050 and 2100.The storm surge will greatly impact the coastal area within about 10-30 km of the Bohai Bay,in where almost all major coastal projects are located.The prompt response to flood disaster due to storm surge is urgently needed,for which five suggestions have been proposed based on the geological background of Bohai Bay.This study may offer insight into the development of the response and adaptive plans for flooding disasters caused by storm surge.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
基金supported by the National Natural Science Foundation of China(No.41902141)the Fundamental Research Fund for the Central Universities(No.E1E40403)the PetroChina Innovation Foundation(No.2018D-5007-0103)
文摘This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flooding to SP flooding.The conglomerate reservoir of the Badaowan Formation in the seventh block of the Karamay Oilfield is selected as the research object to reveal the start-up mechanism of residual oil and determine the controlling factors of oil recovery through SP flooding experiments of natural cores and microetching models.The experimental results are used to identify four types of residual oil after water flooding in this conglomerate reservoir with a complex pore structure:oil droplets retained in pore throats by capillary forces,oil cluster trapped at the junction of pores and throats,oil film on the rock surface,isolated oil in dead-ends of flow channel.For the four types of residual oil identified,the SP solution can enhance oil recovery by enlarging the sweep volume and improving the oil displacement efficiency.First,the viscosity-increasing effect of the polymer can effectively reduce the permeability of the displacement liquid phase,change the oil-water mobility ratio,and increase the water absorption.Furthermore,the stronger the shear drag force of the SP solution,the more the crude oil in a porous medium is displaced.Second,the surfactant can change the rock wettability and reduce the absorption capacity of residual oil by lowering interfacial tension.At the same time,the emulsification further increases the viscosity of the SP solution,and the residual oil is recovered effectively under the combined effect of the above two factors.For the four start-up mechanisms of residual oil identified after water flooding,enlarging the sweep volume and improving the oil displacement efficiency are interdependent,but their contribution to enhanced oil recovery are different.The SP flooding system primarily enlarges the sweep volume by increasing viscosity of solution to start two kinds of residual oil such as oil droplet retained in pore throats and isolated oil in dead-ends of flow channel,and primarily improves the oil displacement efficiency by lowing interfacial tension of oil phase to start two kinds of residual oil such as oil cluster trapped at the junction of pores and oil film on the rock surface.On this basis,the experimental results of the oil displacement from seven natural cores show that the pore structure of the reservoir is the main factor influencing water flooding recovery,while the physical properties and original oil saturation have relatively little influence.The main factor influencing SP flooding recovery is the physical and chemical properties of the solution itself,which primarily control the interfacial tension and solution viscosity in the reservoir.The residual oil saturation after water flooding is the material basis of SP flooding,and it is the second-most dominant factor controlling oil recovery.Combined with the analysis results of the influencing factors and reservoir parameters,the water flooding recovery index and SP flooding recovery index are defined to further establish quantitative calculation models of oil recovery under different displacement modes.The average relative errors of the two models are 4.4%and 2.5%,respectively;thus,they can accurately predict the oil recovery of different displacement stages and the ultimate reservoir oil recovery.
基金The authors would like to thank Ministry of Higher Education(MOHE),Malaysia,Universiti Teknologi Malaysia,Johor Bahru(Grant Number:QJ130000.3551.07G12)Universiti Teknologi MARA,Shah Alam,for funding thisresearch.
文摘Carboxymethyl cellulose(CMC)has emerged in oil and gas industries as a superior substitution to the conventional HPAM and xanthan gum(XG)for high viscosity polymer flooding application.In this study,the combined effect of conventional surfactant,sodium dodecylbenzenesulfonate(SDBS)and CMC for potential surfactant-polymer(SP)flooding in enhanced oil recovery(EOR)has been investigated.Thereafter,SDBS–CMC interaction and the functional groups present in CMC were appropriately identified.The presence of various C–O bonds signifies the existence of carboxymethyl group which greatly influence the rheological properties of CMC solution.The behaviour of SDBS–CMC was characterized by their viscosity,shear rate,solubilization,wettability,and surface tension.Tertiary flooding utilizing SDBS-CMC was performed and compared to commercial SDBS-XG SP flooding.The results indicate several SDBS-CMC combinations are favourable for EOR application.Solution viscosity shows direct relationship with CMC concentrations.Consequently,at any given SDBS concentrations,significant increment was observed at 0.3 wt%and above.However,the trend displayed inconclusive relation to SDBS fractions.Majority of the SDBS-CMC combinations generate Winsor III emulsions particularly at CMC of 0.2 and 0.3 wt%,while Type II were observed in few combinations.Increasing CMC concentrations increased the contact angle,while gradual reductions were observed with SDBS concentrations.The gradual reduction in surface tension was highly influenced by the addition of CMC rather than SDBS.A novel combination of 0.3 wt%SDBS and 0.4 wt%CMC possessed an encouraging criterion in term of viscosity,solubilization,and surface tension reduction for EOR application.Flooding experiment from several SDBS-CMC combinations proved to recover additional oil ranging 16.4–20.2%of oil initially in place(OIIP).The trend in incremental oil recovery is similar to that of when utilising SDBS-XG.
基金Supported by the National Key R&D Program of China(2018YFC0807802)National Natural Science Foundation of China(41874081)。
文摘To improve effectiveness of ASP flooding, it is necessary to establish a reliable parameter design and tracking adjustment method to monitor the process of oil displacement. A differential wide field electromagnetic method was proposed and applied to the ASP displacement monitoring test in a block of the Daqing Oilfield. In the process of ASP flooding, the electromagnetic field was measured many times. The data acquired before the ASP flooding were set as the background field, and the resistivity model was obtained by inversion. Then, the resistivity data were calibrated by logging data and the resistivity model was established. Finally, the range and front of ASP flooding were deduced with the residual gradient from the spatial domain first-order difference of the resistivity model. Production data of well groups in this block have proved that this method can work out the range and front of ASP flooding accurately, providing support for optimization of ASP flooding parameters.
基金the National Natural Science Foundation of China(Grants No.42041006,41790443 and 41927806).
文摘The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100.
基金supported by the Major Science and Technology Project(Nos.CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ,KJGG2021-0505) of CNOOC Co.,Ltd.of Chinathe National Natural Science Foundation of China(No.42002171)+2 种基金China Postdoctoral Science Foundation(Nos.2020TQ0299,2020M682520)Postdoctoral Innovation Science Foundation of Hubei Province of ChinaScientific Research Project of Zhanjiang Branch of CNOOC(No.ZYKY-2022-ZJ-02)。
文摘To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.
文摘This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil recovery(EOR)in carbonate reservoirs.Thermal gravimetric analysis(TGA)tests were conducted initially in order to evaluate the properties of tragacanth gum.Subsequently,scanning electron microscopy(SEM)and energy-dispersive X-ray(EDX)tests were used to detect the structure of clay particles.In various scenarios,the effects of natural NPs and polymer on the wettability alteration,interfacial tension(IFT)reduction,viscosity improvement,and oil recovery were investigated through contact angle system,ring method,Anton Paar viscometer,and core flooding tests,respectively.The entire experiment was conducted at 25,50,and 75℃,respectively.According to the experimental results,the clay minerals alone did not have a significant effect on viscosity,but the addition of minerals to the polymer solution leads to the viscosity enhancement remarkably,resulting mobility ratio improvement.Among clay NPs,the combination of natural polymer and kaolinite results in increased viscosity at all temperatures.Considerable wettability alteration was also observed in the case of natural polymer and illite NPs.Illite in combination with natural polymer showed an ability in reducing IFT.Finally,the results of displacement experiments revealed that the combination of natural polymer and kaolinite could be the best option for EOR due to its substantial ability to improve the recovery factor.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
基金The funding for this research was provided by the General Program of Chongqing Natural Science Foundation(No.cstc2020jcyj-msxmX0073)Scientific and Technological Research Program of Chongqing Municipal Education Commission(Nos.KJQN202001209,KJZD-K202301206)Chongqing Graduate Research Innovation Project(CYS22698).
文摘Abiotic stress,including flooding,seriously affects the normal growth and development of plants.Mulberry(Morus alba),a species known for its flood resistance,is cultivated worldwide for economic purposes.The transcriptomic analysis has identified numerous differentially expressed genes(DEGs)involved in submergence tolerance in mulberry plants.However,a comprehensive analyses of metabolite types and changes under flooding stress in mulberry remain unreported.A non-targeted metabolomic analysis utilizing liquid chromatographytandem mass spectrometry(LC-MS/MS)was conducted to further investigate the effects of flooding stress on mulberry.A total of 1,169 metabolites were identified,with 331 differentially accumulated metabolites(DAMs)exhibiting up-regulation in response to flooding stress and 314 displaying down-regulation.Pathway enrichment analysis identified significant modifications in many metabolic pathways due to flooding stress,including amino acid biosynthesis and metabolism and flavonoid biosynthesis.DAMs and DEGs are significantly enriched in the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways for amino acid,phenylpropanoid and flavonoid synthesis.Furthermore,metabolites such as methyl jasmonate,sucrose,and D-mannose 6-phosphate accumulated in mulberry leaves post-flooding stress.Therefore,genes and metabolites associated with these KEGG pathways are likely to exert a significant influence on mulberry flood tolerance.This study makes a substantial contribution to the comprehension of the underlying mechanisms implicated in the adaptation of mulberry plants to submergence.
基金funded by the National University of Mongolia under grant agreement P2023(grant number P2023-4578)。
文摘This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.
基金supported by the Forward Looking Basic Major Scientific and Technological Projects of CNPC (Grant No.2021DJ2202).
文摘Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.
文摘Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.
基金funded by the National Natural Science Foun-dation of China(No.51974343)the China Postdoctoral Science Foundation(No.2021M703588)the Open Fund of Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas(Yangtze University)(No.YQZC202307).
文摘This study aims to further enhance the oil recovery of reservoirs in the Zhong-2 Block of the Gudao Oilfield by identifying the most effective microbial-flooding activator systems and applying them in the field.We began by analyzing the structure of the reservoirs'endogenous microbial communities to understand the potential impact of microbial flooding.This was followed by determining commonly used activator systems based on their abilities to stimulate oil-displacement functional bacteria.Through laboratory experiments on oil displacement efficiency and sweep characteristics,we determined the optimal activator injection method(injection ratio)and the requisite bacterial concentration for maximal microbial-flooding efficacy.Finally,we selected the optimal activator systems and applied them to field tests.Our findings suggest the target block is highly receptive to microbial-flooding.In terms of performance,the activator systems ranked as No.3>No.4>No.1>No.2.Interestingly,a deep activator system,when compared to the top-performing No.3 system,exhibited a higher bacterial concentration peak and longer peaking duration.Optimal oil displacement effects were observed at a 1:4 vol ratio between the No.3 activator and deep activator systems,with bacterial concentrations of up to 106 cells/mL or above.Field tests with the selected activator systems,following a specific injection protocol,demonstrated a notable increase in oil production and a reduction in water cut.
基金supported in part by the National Key R&D Program of China under Grant 2018YFA0701601in part by the National Natural Science Foundation of China(Grant No.62201605,62341110,U22A2002)in part by Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.
文摘BACKGROUND Superimposed high-frequency jet ventilation(SHFJV)is suitable for respiratory motion reduction and essential for effective lung tumor ablation.Fluid filling of the target lung wing one-lung flooding(OLF)is necessary for therapeutic ultrasound applications.However,whether unilateral SHFJV allows adequate hemodynamics and gas exchange is unclear.AIM To compared SHFJV with pressure-controlled ventilation(PCV)during OLF by assessing hemodynamics and gas exchange in different animal positions.METHODS SHFJV or PCV was used alternatingly to ventilate the non-flooded lungs of the 12 anesthetized pigs during OLF.The animal positions were changed from left lateral position to supine position(SP)to right lateral position(RLP)every 30 min.In each position,ventilation was maintained for 15 min in both modalities.Hemodynamic variables and arterial blood gas levels were repeatedly measured.RESULTS Unilateral SHFJV led to lower carbon dioxide removal than PCV without abnormally elevated carbon dioxide levels.SHFJV slightly decreased oxygenation in SP and RLP compared with PCV;the lowest values of PaO_(2) and PaO_(2)/FiO_(2) ratio were found in SP[13.0;interquartile range(IQR):12.6-5.6 and 32.5(IQR:31.5-38.9)kPa].Conversely,during SHFJV,the shunt fraction was higher in all animal positions(highest in the RLP:0.30).CONCLUSION In porcine model,unilateral SHFJV may provide adequate ventilation in different animal positions during OLF.Lower oxygenation and CO_(2) removal rates compared to PCV did not lead to hypoxia or hypercapnia.SHFJV can be safely used for lung tumor ablation to minimize ventilation-induced lung motion.
基金funded by the National Natural Science Foundation of China(No.51974343)the Open Fund of Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas(Yangtze University)(No.YQZC202307)+2 种基金the Qingdao Postdoctoral Applied Research Project(No.qdyy20200084)the China Postdoctoral Science Foundation(No.2021M703588)a project of Science&Technology R&D Department of SINOPEC entitled Key Technology for Optimization Design of 3D Development of Shale oil in Dongying Sag(No.P23026).
文摘Currently,limited studies of immiscible water-alternating-CO_(2)(imWACO_(2))flooding focus on the impact of reservoir heterogeneity on reservoir development outcomes.Given this,using the heterogeneous reservoirs in the Gao 89-1 block as a case study,this study conducted slab core flooding experiments and numerical simulations to assess the impact of reservoir heterogeneity on imWACO_(2)flooding efficiency.It can be concluded that imWACO_(2)flooding can enhance the sweep volume and oil recovery compared to continuous CO_(2)flooding.As the permeability difference increases,the difference in the swept volume between zones/layers with relatively high and low permeability increases.To optimize the exploitation of reservoirs in the Gao 89-1 block,the optimal timing and CO_(2)injection rate for imWACO_(2)flooding are determined at water cut of 40%and 10000 m^(3)/d,respectively.A short injection-production semi-period,combined with multiple cycles of water and CO_(2)injection alternations,is beneficial for enhanced oil recovery from imWACO_(2)flooding.
基金supported by the National Natural Science Foundation of China(42293261)projects of the China Geological Survey(DD20230091,DD20189506,DD20211301)+1 种基金the 2024 Qinhuangdao City level Science and Technology Plan Self-Financing Project(Research on data processing methods for wave buoys in nearshore waters)the project of Hebei University of Environmental Engineering(GCZ202301)。
文摘The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coastal lowland with land subsidence.Therefore,the risk assessment of such inundation for these areas is of great significance for the sustainable socio-economic development.In this paper,the authors use Elevation-Area method and Regional Ocean Model System(ROMS)model to assess the risk of the inundation of Bohai Bay by storm surge.The simulation results of Elevation-Area method show that either a 50-year or 100-year storm surge can inundate coastal areas exceeding 8000 km^(2);the numerical simulation results based on hydrodynamics,considering ground friction and duration of the storm surge high water,show that a 50-year or 100-year storm surge can only inundate an area of over 2000 km^(2),which is far less than 8000 km^(2);while,when taking into account the land subsidence and sea level rise,the very inundation range will rapidly increase by 2050 and 2100.The storm surge will greatly impact the coastal area within about 10-30 km of the Bohai Bay,in where almost all major coastal projects are located.The prompt response to flood disaster due to storm surge is urgently needed,for which five suggestions have been proposed based on the geological background of Bohai Bay.This study may offer insight into the development of the response and adaptive plans for flooding disasters caused by storm surge.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.