A class of set-valued Leontief input-output equation is introduced and two solvability theorems are obtained, which provide some corresponding existence, surjection as well as continuity results.
Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p),...Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p), where h(p) is a function depending only on p. In particular, if α^3 = 1, then the nilpotent class of G is at most 2.展开更多
Based on the classical(matrix type)input-output analysis,a type of nonlinear (continuous type) conditional Leontief model,input-output equation were introduced,as well as three corresponding questions,namely,solvabili...Based on the classical(matrix type)input-output analysis,a type of nonlinear (continuous type) conditional Leontief model,input-output equation were introduced,as well as three corresponding questions,namely,solvability,continuity and surjectivity,and some fixed point and surjectivity methods in nonlinear analysis were used to deal with these questions. As a result,the main theorems are obtained,which provide some sufficient criterions to solve above questions described by the boundary properties of the enterprises consuming operator.展开更多
In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone ...In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone type, an existence theorem for the Dirichlet boundary value problem is proved.展开更多
Sufficient conditions are given to assert that two differentiable mappings between Banach spaces have common values. The proof is essentially based upon continuation methods.
We consider the ■■-lemma for complex manifolds under surjective holomorphic maps.Furthermore,using Deligne-Griffiths-Morgan-Sullivan’s theorem,we prove that a product compact complex manifold satisfies the ■■-lem...We consider the ■■-lemma for complex manifolds under surjective holomorphic maps.Furthermore,using Deligne-Griffiths-Morgan-Sullivan’s theorem,we prove that a product compact complex manifold satisfies the ■■-lemma if and only if all of its components do as well.展开更多
The main purpose of this paper is to study the surjectivity theorems for maximal monotone mapping in reflexive Banach spaces by using fixed point theory. We prove some new surjectivity theorems under some conditions a...The main purpose of this paper is to study the surjectivity theorems for maximal monotone mapping in reflexive Banach spaces by using fixed point theory. We prove some new surjectivity theorems under some conditions and give its application in differential equation.展开更多
In this paper we characterize a broad class of semilinear surjective operators given by the following formula where Z are Hilbert spaces, and is a suitable nonlinear function. First, we give a necessary and sufficient...In this paper we characterize a broad class of semilinear surjective operators given by the following formula where Z are Hilbert spaces, and is a suitable nonlinear function. First, we give a necessary and sufficient condition for the linear operator to be surjective. Second, we prove the following statement: If and is a Lipschitz function with a Lipschitz constant small enough, then and for all the equation admits the following solution .We use these results to prove the exact controllability of the following semilinear evolution equation , , where , are Hilbert spaces, is the infinitesimal generator of strongly continuous semigroup in the control function belong to and is a suitable function. As a particular case we consider the semilinear damped wave equation, the model of vibrating plate equation, the integrodifferential wave equation with Delay, etc.展开更多
A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fr...A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.展开更多
Letϕ:Pc(M1)→Pc(M2)be a surjective Lp-isometry between Grassmann spaces of projections with the trace value c in semifinite factors M1 and M2.Based on the characterization of surjective Lp-isometries of unitary groups...Letϕ:Pc(M1)→Pc(M2)be a surjective Lp-isometry between Grassmann spaces of projections with the trace value c in semifinite factors M1 and M2.Based on the characterization of surjective Lp-isometries of unitary groups in finite factors,we show thatϕor I−ϕcan be extended to a∗-isomorphism or a∗-antiisomorphism.In particular,ϕis given by a∗-(anti-)isomorphism unless M1 and M2 are finite and c=12.展开更多
This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x...This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.展开更多
Suppose that f:Hn → Hn (n≥2) maps any r-dimensional hyperplane (1≤r【n) into an r-dimensional hyperplane. In this paper, we prove that f is an isometry if and only if f is a surjective map. This result gives an aff...Suppose that f:Hn → Hn (n≥2) maps any r-dimensional hyperplane (1≤r【n) into an r-dimensional hyperplane. In this paper, we prove that f is an isometry if and only if f is a surjective map. This result gives an affirmative answer to a recent conjecture due to Li and Yao.展开更多
In the 19th problem of [1], J. S. Golan put forward the following question: 'For what kind of ring R is it true that the map γ_#:R-tors→S-tors is surjective for every ring surjective homomorphism r: R→S?' w...In the 19th problem of [1], J. S. Golan put forward the following question: 'For what kind of ring R is it true that the map γ_#:R-tors→S-tors is surjective for every ring surjective homomorphism r: R→S?' where both R and S are associative rings with identity, R-tors stands for a lattice composed of all hereditary torsion theories in left R-module category R-Mod and for each τ ∈ R-tors, γ_#(τ)=σ=(f_σ,f_σ)∈S-tors, in展开更多
For an infinite set X, denote by Ω(X) the semigroup of all surjective mappings from X to X. We determine Green's relations in Ω(X), show that the kernel (unique minimum ideal) of Ω(X) exists and det ermine its ...For an infinite set X, denote by Ω(X) the semigroup of all surjective mappings from X to X. We determine Green's relations in Ω(X), show that the kernel (unique minimum ideal) of Ω(X) exists and det ermine its elemen ts and cardinali ty. For a cou ntably infinite set X, we describe the elements of Ω(X) for which the D-class and J-class coincide. We compare the results for Ω(X) with the corresponding results for other transformation semigroups on X.展开更多
A partial order on the set of the prime knots can be defined by the existence of a surjective homomorphism between knot groups. In the previous paper, we determined the partial order in the knot table. In this paper, ...A partial order on the set of the prime knots can be defined by the existence of a surjective homomorphism between knot groups. In the previous paper, we determined the partial order in the knot table. In this paper, we prove that 31 and 41 are minimal elements. Further, we study which surjection a pair of a periodic knot and its quotient knot induces, and which surjection a degree one map can induce.展开更多
The main result of this paper is to prove Fang and Wang's result by another method: Let E be any normed linear space and Vo : S(E)→ S(l^1) be a surjective isometry. Then V0 can be linearly isometrically extend...The main result of this paper is to prove Fang and Wang's result by another method: Let E be any normed linear space and Vo : S(E)→ S(l^1) be a surjective isometry. Then V0 can be linearly isometrically extended to E.展开更多
This paper shows that if a Gateaux differentiable functional f has a finite lower bound(although it need not attain it),then,for everyε>0,there exists some point zεsuch that‖f′(zε)‖ε1+h(‖zε‖),where h:[0,...This paper shows that if a Gateaux differentiable functional f has a finite lower bound(although it need not attain it),then,for everyε>0,there exists some point zεsuch that‖f′(zε)‖ε1+h(‖zε‖),where h:[0,∞)→[0,∞)is a continuous function such that∫∞011+h(r)dr=∞.Applications are given to extremum problem and some surjective mappings.展开更多
文摘A class of set-valued Leontief input-output equation is introduced and two solvability theorems are obtained, which provide some corresponding existence, surjection as well as continuity results.
基金The NSF(11371124)of Chinathe NSF(F2015402033)of Hebei Provincethe Doctoral Special Foundation(20120066)of Hebei University of Engineering
文摘Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p), where h(p) is a function depending only on p. In particular, if α^3 = 1, then the nilpotent class of G is at most 2.
文摘Based on the classical(matrix type)input-output analysis,a type of nonlinear (continuous type) conditional Leontief model,input-output equation were introduced,as well as three corresponding questions,namely,solvability,continuity and surjectivity,and some fixed point and surjectivity methods in nonlinear analysis were used to deal with these questions. As a result,the main theorems are obtained,which provide some sufficient criterions to solve above questions described by the boundary properties of the enterprises consuming operator.
文摘In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone type, an existence theorem for the Dirichlet boundary value problem is proved.
文摘Sufficient conditions are given to assert that two differentiable mappings between Banach spaces have common values. The proof is essentially based upon continuation methods.
基金supported by the National Natural Science Foundation of China(12001500,12071444)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2020L0290)the Natural Science Foundation of Shanxi Province of China(201901D111141).
文摘We consider the ■■-lemma for complex manifolds under surjective holomorphic maps.Furthermore,using Deligne-Griffiths-Morgan-Sullivan’s theorem,we prove that a product compact complex manifold satisfies the ■■-lemma if and only if all of its components do as well.
基金Foundation item: Supported by the Shanxi Gaoxiao Keji Kaifa Yanjiu(2007129) Supported by Boshi Ke yan Qidong Jijin of Shanxi University of Finance and Economics(2006) Supported by the Natural Science Foundation of Shanxi Province(2008011002-3).Acknowledgment The authors wish to express thanks to referees for valuable suggestions.
文摘The main purpose of this paper is to study the surjectivity theorems for maximal monotone mapping in reflexive Banach spaces by using fixed point theory. We prove some new surjectivity theorems under some conditions and give its application in differential equation.
文摘In this paper we characterize a broad class of semilinear surjective operators given by the following formula where Z are Hilbert spaces, and is a suitable nonlinear function. First, we give a necessary and sufficient condition for the linear operator to be surjective. Second, we prove the following statement: If and is a Lipschitz function with a Lipschitz constant small enough, then and for all the equation admits the following solution .We use these results to prove the exact controllability of the following semilinear evolution equation , , where , are Hilbert spaces, is the infinitesimal generator of strongly continuous semigroup in the control function belong to and is a suitable function. As a particular case we consider the semilinear damped wave equation, the model of vibrating plate equation, the integrodifferential wave equation with Delay, etc.
基金Supported by the National Natural Sciences Foundation of China (No. 61064002)the Program for New Century Excellent Talents in University China (No. Degrte NCET-06-0756)
文摘In this paper, the concepts of (α,β) vague mappings, surjective (α,β) vague mappings, injective (α,β) vague mappings, bijective (α,β) vague mappings, (α,β) adjoin vague mappings, (α,β) vague monomorphism, (α,β) vague epimorphism, (α,β) vague isomorphism, (α,β) Vague par-tition are introduced through the so-called (α,β) hierarchical divide vague relations We extend the results on fuzzy mappings, and obtain some of their properties.
文摘A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.
基金supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN2021000529)the Natural Science Foundation of Chongqing Science and Technology Commission(Grant No.cstc2020jcyj-msxm X0723)+2 种基金supported by Young Talent Fund of University Association for Science and Technology in Shaanxi(Grant No.20210507)supported by National Natural Science Foundation of China(Grant Nos.11871127and 11971463)supported by National Natural Science Foundation of China(Grant Nos.11971463,11871303 and 11871127)。
文摘Letϕ:Pc(M1)→Pc(M2)be a surjective Lp-isometry between Grassmann spaces of projections with the trace value c in semifinite factors M1 and M2.Based on the characterization of surjective Lp-isometries of unitary groups in finite factors,we show thatϕor I−ϕcan be extended to a∗-isomorphism or a∗-antiisomorphism.In particular,ϕis given by a∗-(anti-)isomorphism unless M1 and M2 are finite and c=12.
文摘This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.
基金supported by National Natural Science Foundation of China (Grant No.10771059)Tianyuan Foundation
文摘Suppose that f:Hn → Hn (n≥2) maps any r-dimensional hyperplane (1≤r【n) into an r-dimensional hyperplane. In this paper, we prove that f is an isometry if and only if f is a surjective map. This result gives an affirmative answer to a recent conjecture due to Li and Yao.
文摘In the 19th problem of [1], J. S. Golan put forward the following question: 'For what kind of ring R is it true that the map γ_#:R-tors→S-tors is surjective for every ring surjective homomorphism r: R→S?' where both R and S are associative rings with identity, R-tors stands for a lattice composed of all hereditary torsion theories in left R-module category R-Mod and for each τ ∈ R-tors, γ_#(τ)=σ=(f_σ,f_σ)∈S-tors, in
文摘For an infinite set X, denote by Ω(X) the semigroup of all surjective mappings from X to X. We determine Green's relations in Ω(X), show that the kernel (unique minimum ideal) of Ω(X) exists and det ermine its elemen ts and cardinali ty. For a cou ntably infinite set X, we describe the elements of Ω(X) for which the D-class and J-class coincide. We compare the results for Ω(X) with the corresponding results for other transformation semigroups on X.
基金Grand-in-Aid for Scientific Research (No.17540064 and No.18840008)
文摘A partial order on the set of the prime knots can be defined by the existence of a surjective homomorphism between knot groups. In the previous paper, we determined the partial order in the knot table. In this paper, we prove that 31 and 41 are minimal elements. Further, we study which surjection a pair of a periodic knot and its quotient knot induces, and which surjection a degree one map can induce.
基金Foundation item: the National Natural Science Foundation of China (No. 10571090) the Research Fund for the Doctoral Program of Higher Education (No. 20060055010) and the Fund of Tianjin Educational Comittee (No. 20060402).
文摘The main result of this paper is to prove Fang and Wang's result by another method: Let E be any normed linear space and Vo : S(E)→ S(l^1) be a surjective isometry. Then V0 can be linearly isometrically extended to E.
文摘This paper shows that if a Gateaux differentiable functional f has a finite lower bound(although it need not attain it),then,for everyε>0,there exists some point zεsuch that‖f′(zε)‖ε1+h(‖zε‖),where h:[0,∞)→[0,∞)is a continuous function such that∫∞011+h(r)dr=∞.Applications are given to extremum problem and some surjective mappings.