期刊文献+
共找到332篇文章
< 1 2 17 >
每页显示 20 50 100
The Influence of the Imperfectness of Contact Conditions on the Critical Velocity of the Moving Load Acting in the Interior of the Cylinder Surrounded with Elastic Medium 被引量:2
1
作者 M.Ozisik M.A.Mehdiyev S.D.Akbarov 《Computers, Materials & Continua》 SCIE EI 2018年第2期103-136,共34页
The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise hom... The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise homogeneous body model by employing the exact field equations of the linear theory of elastodynamics.It is assumed that the internal pressure is point-located with respect to the cylinder axis and is axisymmetric in the circumferential direction.Moreover,it is assumed that shear-spring type imperfect contact conditions on the interface between the cylinder and surrounding elastic medium are satisfied.The focus is on the influence of the mentioned imperfectness on the critical velocity of the moving load and this is the main contribution and difference of the present paper the related other ones.The other difference of the present work from the related other ones is the study of the response of the interface stresses to the load moving velocity,distribution of these stresses with respect to the axial coordinates and to the time.At the same time,the present work contains detail analyses of the influence of problem parameters such as the ratio of modulus of elasticity,the ratio of the cylinder thickness to the cylinder radius,and the shear-spring type parameter which characterizes the degree of the contact imperfection on the values of the critical velocity and stress distribution.Corresponding numerical results are presented and discussed.In particular,it is established that the values of the critical velocity of the moving pressure decrease with the external radius of the cylinder under constant thickness of that. 展开更多
关键词 Moving internal pressure critical velocity circular hollow cylinder surrounded by elastic medium shear-spring type imperfection interface stresses
下载PDF
Shijiazhuang: A New Homeland Surrounded by a Clear River
2
《China Today》 2002年第5期56-59,共4页
关键词 A New Homeland surrounded by a Clear River Shijiazhuang
下载PDF
Surrounded by Ebony
3
作者 Liu Wei 《ChinAfrica》 2011年第11期44-44,共1页
Makonde woodcarving gains an audience in China through couple Li Songshan and Han Rong THE Makonde are an ethnic group living along the Tanzania-Mozambique border.They are considered some of Africa’s most talented wo... Makonde woodcarving gains an audience in China through couple Li Songshan and Han Rong THE Makonde are an ethnic group living along the Tanzania-Mozambique border.They are considered some of Africa’s most talented woodcarvers and their craftsmanship has been passed down from generation to generation.Makonde woodcarving is often referred to as the grandfather of modern African wood sculpture.Its exaggerated human and animal patterns reflect the essence of traditional African culture,full of imagination and inspired by nature. 展开更多
关键词 surrounded by Ebony
下载PDF
Surrounded by brothers
4
作者 John Legend 《疯狂英语(新读写)》 2018年第3期37-37,共1页
I know it is wrong to envy your children.But when I see my son,Tonio and his younger brother Sam going down a slide together,one’s arm around the other,I know I have missed something wonderful.Not only did I never ha... I know it is wrong to envy your children.But when I see my son,Tonio and his younger brother Sam going down a slide together,one’s arm around the other,I know I have missed something wonderful.Not only did I never have a brother,but also I had no friendships like theirs.My sister was old enough to help take care of me,so she was more a mother than a playmate,and I was more a pest than a friend.A brother would have been wonderful,but it was not in the family planning. 展开更多
关键词 surrounded by brothers
下载PDF
Quasinormal Modes of the Schwarzschild Black Hole Surrounded by the Quintessence Field in Rastall Gravity 被引量:2
5
作者 Jun Liang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第12期695-704,共10页
The quasinormal modes of the Schwarzschild black hole surrounded by the quintessence in Rastall gravity are studied using the sixth-order Wentzel-Kramers-Brillouin approximative approach. The effect of the Rastall par... The quasinormal modes of the Schwarzschild black hole surrounded by the quintessence in Rastall gravity are studied using the sixth-order Wentzel-Kramers-Brillouin approximative approach. The effect of the Rastall parameter on the quasinormal modes of gravitational, electromagnetic and massless scalar perturbations is explored. Compared to the case of Einstein gravity, it is found that, when η < 0, the gravitational field, electromagnetic field as well as massless scalar field damp more rapidly and have larger real frequency of oscillation in Rastall gravity, while when η > 0, the gravitational field, electromagnetic field as well as massless scalar field damp more slowly and have smaller real frequency of oscillation in Rastall gravity. It is also found that the gravitational field, electromagnetic field as well as massless scalar field damp more and more slowly and the real frequency of oscillation for the gravitational perturbation, electromagnetic perturbation as well as massless scalar perturbation becomes smaller and smaller as the Rastall parameter η increases.Compared among the quasinormal frequencies of gravitational, electromagnetic and massless scalar perturbations, I find that, for fixed η,(l, n), ε and Nq, the oscillation damps most slowly for the gravitational perturbation, mediate for the electromagnetic perturbation and most rapidly for the massless scalar perturbation, and the real frequency of oscillation is the smallest for the gravitational perturbation, mediate for the electromagnetic perturbation and the largest for the massless scalar perturbation in Rastall gravity. 展开更多
关键词 QUASINORMAL MODES Rastall GRAVITY SCHWARZSCHILD black hole surrounded by the quintessencefield WKB approximation
原文传递
Development and application of novel high‐efficiency composite ultrafine cement grouts for roadway in fractured surrounding rocks 被引量:1
6
作者 Maolin Tian Shaojie Chen +1 位作者 Lijun Han Hongtian Xiao 《Deep Underground Science and Engineering》 2024年第1期53-69,共17页
The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ... The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives. 展开更多
关键词 broken surrounding rock composite ultrafine cement(CUC)grouts grouting material grouting performance grouting reinforcement
下载PDF
Strength and damage evolution mechanism of rock mass with holes under cyclic loading
7
作者 LIU Hong-tao HAN Zi-jun +6 位作者 GUO Xiao-fei LIU Qin-yu QIAO Zhong-jin LIANG Jia-lu CHENG Wen-cong ZHANG Xi-ying ZHANG Yu-qi 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2717-2735,共19页
The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic ... The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic loading, elucidates the acoustic emission (AE) characteristics and their spatial evolution, and establishes the interrelation among AE, stress, strain, time, and cumulative damage. The results reveal that the rock mass with holes and the intact rock mass show softening and hardening characteristics after cyclic loading. The plastic strain of the rock mass with holes is smaller than that of the intact rock mass, and the stress −strain curve shows hysteresis characteristics. Under uniaxial compression, the pore-bearing rock mass shows the characteristics of higher ringing count, AE energy, b-value peak, and more cumulative ringing count in the failure stage, while it shows lower characteristics under cyclic action. At the initial stage of loading, compared with the intact rock mass, the pore-containing rock mass shows the characteristics of a low b-value. The AE positioning and cumulative damage percentage are larger, and the AE positioning is denser around the hole. The specimen with holes is mainly shear failure, and the complete specimen is mainly tensile shear failure. 展开更多
关键词 roadway surrounding rock control acoustic emission cyclic loading failure mode precursor of destruction
下载PDF
Sub-Homogeneous Peridynamic Model for Fracture and Failure Analysis of Roadway Surrounding Rock
8
作者 Shijun Zhao Qing Zhang +3 位作者 Yusong Miao Weizhao Zhang Xinbo Zhao Wei Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3167-3187,共21页
The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel func... The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force.Additionally,modifications to the traditional bondbased PD model are made.By considering the micro-structure of coal-rock materials within a uniform discrete model,heterogeneity characterized by bond random pre-breaking is introduced.This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity,rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered coal-rock mass structures.The established numerical model and simulation method,termed the sub-homogeneous PD model,not only incorporates the support effect but also captures accurately the random heterogeneous micro-structure of roadway surrounding rock.The simulation results obtained using this model show good agreement with field measurements from the Fucun coal mine,effectively validating the model’s capability in accurately reproducing the deformation and failure mode of surrounding rock under bolt-supported(anchor cable).The proposed subhomogeneous PD model presents a valuable and effective simulation tool for studying the deformation and failure of roadway surrounding rock in coal mines,offering new insights and potential advancements. 展开更多
关键词 Roadway surrounding rock PERIDYNAMICS heterogeneous material fracture analysis numerical simulation
下载PDF
Surrounding rock pressure in the tunnel portal section through moraine under freeze-thaw action
9
作者 CHEN Zhimin LIU Baoli +1 位作者 LIU Yaohui XU Jiangtao 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2480-2493,共14页
Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and c... Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and climatic conditions that facilitate freeze-thaw action.Despite these challenges,there is a dearth of studies investigating the influence of freeze-thaw action and water content on the mechanical properties of moraines,and no research on calculating surrounding rock pressure in moraine tunnels subjected to freeze-thaw conditions.In this study,direct shear tests under freeze-thaw cycles were conducted to examine the effects of freeze-thaw cycles and water content on the mechanical properties of frozen moraine.A comprehensive parameter K,integrating the number of freeze-thaws and water content,was introduced to model cohesion c.Drawing on Terzaghi Theory,we propose an improved algorithm for calculating surrounding rock pressure at the portal section of moraine tunnels.Using a tunnel as a case study,surrounding rock pressure was calculated under various conditions to validate the Improved Algorithm's efficacy.The results show that:(1)Strength loss exhibits a linear trend with the number of freeze-thaw cycles at water content levels of 4%and 8%,while at 12%water content,previous freeze-thaw cycles induce more significant damage to the soil.(2)Moraine saturation peaks between 8%and 12%water content.Following repeated freeze-thaw cycles,moraine shear strength initially increases before decreasing with varying water content.(3)The internal friction angle of moraine experiences slight reductions with prolonged freeze-thaw cycles,but both freeze-thaw cycles and water content significantly influence cohesion.(4)Vertical surrounding rock pressure increases after the initial freeze-thaw cycle,particularly with higher water content,although freeze-thaw cycles have minimal effect on it.(5)Freeze-thaw cycles lead to a substantial increase in lateral surrounding rock pressure,necessitating reinforced support structures at the arch wall,arch waist,and arch foot in engineering projects to mitigate freeze-thaw effects.This study provides a foundation for designing and selecting tunnel support structures in similar geological conditions. 展开更多
关键词 MORAINES Freeze-thaw cycles Direct shear test Surrounding rock pressure
下载PDF
Stability mechanism and control of the pumpable supports in longwall recovery room
10
作者 Dong Zhang Jianbiao Bai +8 位作者 Zhijun Tian Zizheng Zhang Yonghong Guo Rui Wang Ying Xu Hao Fu Shuai Yan Min Deng Shuaigang Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期957-974,共18页
The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking un... The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery. 展开更多
关键词 Pre-driven recovery room Pumpable supports Unbalanced bearing coefficient Hydraulic fracture Stability analysis Surrounding rock control
下载PDF
Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods
11
作者 Duan Zhu Zhende Zhu +2 位作者 Cong Zhang LunDai Baotian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2445-2470,共26页
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a... Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels. 展开更多
关键词 Cross-fault tunnel finite element analysis excavation methods surrounding rock deformation grouting reinforcement
下载PDF
Reduced magma generation and its implications for the Pulang giant porphyry Cu-polymetallic deposit in Northwest Yunnan,China
12
作者 Jingwei Guan Tao Ren +3 位作者 Lei Wang Shenjin Guan Lianrong Wu Baosheng Shi 《Acta Geochimica》 EI CAS CSCD 2024年第4期802-813,共12页
The Pulang giant porphyry Cu-Mo polymetallic deposit is located in the Zhongdian area in the center of the Sanjiang Tethys tectonic domain,which was formed by the westward subduction of the Garze-Litang oceanic slab b... The Pulang giant porphyry Cu-Mo polymetallic deposit is located in the Zhongdian area in the center of the Sanjiang Tethys tectonic domain,which was formed by the westward subduction of the Garze-Litang oceanic slab beneath the Zhongza massif.Chalcopyrite-pyrrhotite-pyritemolybdenite occurs as disseminations,veins,veinlets,and stockworks distributed in the K-silicate alteration zone in the monzonite porphyry,which is superimposed by propylitization.The chemical compositions of biotite and amphibole analyzed by electron probe microanalysis(EPMA)indicate that the ore-forming magma and exsolved fluids experienced a continuous decrease in the oxygen fugacity(fO_(2)).Primary amphibolite and biotite(type I)crystallized at relatively high temperatures(744-827°C)and low fO_(2)(log fO_(2)=−12.26 to−11.91)during the magmatic stage.Hydrothermal fluids exsolved from the magma have a relatively lower temperature(621-711°C)and fO_(2)(log fO_(2)=−14.36 to−13.32)than the original magma.In addition,the presence of a high abundance of pyrrhotite and an insufficiency of primary magnetite and sulfate in the ore(i.e.,anhydrite and gypsum)indicate that the deposit may be a reduced porphyry deposit.Magma and fluid fO_(2)results,combined with previous research on magmatic fO_(2)at the Pulang deposit,indicate that the magma associated with the reduced Pulang ore assemblages was initially generated as a highly oxidized magma that was subsequently reduced by sedimentary rocks of the Tumugou Formation. 展开更多
关键词 Porphyry deposit Oxygen fugacity(fO_(2)) Contamination of surrounding rock Pulang Zhongdian arc
下载PDF
Heterogeneous information phase space reconstruction and stability prediction of filling body–surrounding rock combination
13
作者 Dapeng Chen Shenghua Yin +5 位作者 Weiguo Long Rongfu Yan Yufei Zhang Zepeng Yan Leiming Wang Wei Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1500-1511,共12页
Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body... Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases. 展开更多
关键词 deep mining filling body–surrounding rock combination phase space reconstruction multiple time series stability prediction
下载PDF
Combined blasting for protection of gob-side roadway with thick and hard roof
14
作者 Qiang Fu Jun Yang +4 位作者 Yubing Gao Changjiang Li Hongxu Song Yuxuan Liu Xing Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3165-3180,共16页
The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining direct... The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway. 展开更多
关键词 Thick and hard roof Surrounding rock control Combined blasting Fragmentation and expansion support stress relief
下载PDF
Longitudinal vibration characteristics of a tapered pipe pile considering the vertical support of surrounding soil and construction disturbance
15
作者 Li Zhenya Pan Yunchao +2 位作者 He Xianbin Lv Chong Mohammad Towhid 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期51-63,共13页
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f... This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile. 展开更多
关键词 tapered pipe pile longitudinal vibration vertical support of the surrounding soil construction disturbance displacement impedance
下载PDF
Assessing the range of blasting-induced cracks in the surrounding rock of deeply buried tunnels based on the unified strength theory
16
作者 LI Liang CHEN Jia-jun +3 位作者 ZHAO Lian-heng HE Ke-pei HU Shi-hong LI Hua-long 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2341-2364,共24页
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in... Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed. 展开更多
关键词 deep drilling and blasting cracks in surrounding rock unified strength theory intermediate principle stress in-situ stress cavity expansion dilatancy characteristics
下载PDF
Mechanical response of Q_(2)loess stratum surrounding a hydraulic tunnel under dry-wet cycles
17
作者 Sen Peng Caihui Zhu +5 位作者 Letian Zhai Haoding Xu Yubo Li Guohua Deng Miaomiao Ge Yuan Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第12期4955-4970,共16页
Understanding the mechanical response of Q2 loess subjected to dry-wet cycles(DWCs)is the premise for the rational design of a hydraulic tunnel.Taking the Hanjiang-to-Weihe south line project in China as the research ... Understanding the mechanical response of Q2 loess subjected to dry-wet cycles(DWCs)is the premise for the rational design of a hydraulic tunnel.Taking the Hanjiang-to-Weihe south line project in China as the research background,the microstructure evolution,strength degradation and compression characteristics of Q2 loess under different DWCs were investigated,and the fluid-solid coupling analysis of the hydraulic tunnel was carried out using the FLAC3D software.The amplification effect of tunnel surrounding soil pressure(SSP)and its influence on the long-term stability of the tunnel under different DWCs were obtained.The results showed that the pore microstructure parameters of the undisturbed and remolded loess basically tend to be stable after the number of DWCs exceeds 3.The porosity of Q2 loess is increased by 26%.The internal friction angle and cohesion of Q2 loess are decreased by 35%and 31%,respectively.The vertical strain of Q2 loess is increased by 55%after considering the DWCs.After the DWCs stabilized,the SSP ratio is increased between 10%and 25%.With the increase in buried depth of the tunnel,the SSP ratio is increased by 8%e10%.The SSP is reduced from 8%to 16%by the rise in groundwater level.As the number of DWCs increases and the burial depth of the tunnel decreases,the distribution of SSP becomes progressively more non-uniform.Based on the amplification factor and the modified compressive arch theory,the SSP distribution model of loess tunnel was proposed,which can be preliminarily applied to the design of supporting structures considering DWCs. 展开更多
关键词 Q2 loess Hydraulic tunnel Surrounding soil pressure(SSP) Dry-wet cycles(DWCs) Amplification effect
下载PDF
Research on Feature Matching Optimization Algorithm for Automotive Panoramic Surround View System
18
作者 Guangbing Xiao Ruijie Gu +1 位作者 Ning Sun Yong Zhang 《Computer Systems Science & Engineering》 2024年第5期1329-1348,共20页
In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has pr... In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has proposed a high-performance dimension reduction parallel matching algorithm that integrates Principal Component Analysis(PCA)and Dual-Heap Filtering(DHF).The algorithm employs PCA to map the feature points into the lower-dimensional space and employs the square of Euclidean distance for feature matching,which significantly reduces computational complexity.To ensure the accuracy of feature matching,the algorithm utilizes Dual-Heap Filtering to filter and refine matched point pairs.To further enhance matching speed and make optimal use of computational resources,the algorithm introduces a multi-core parallel matching strategy,greatly elevating the efficiency of feature matching.Compared to Scale-Invariant Feature Transform(SIFT)and Speeded Up Robust Features(SURF),the proposed algorithm reduces matching time by 77%to 80%and concurrently enhances matching accuracy by 5%to 15%.Experimental results demonstrate that the proposed algorithmexhibits outstanding real-time matching performance and accuracy,effectivelymeeting the feature-matching requirements of automotive panoramic surround view systems. 展开更多
关键词 Featurematching automotive panoramic surround view system principal component analysis euclidean distance dual-heap filtering
下载PDF
A 2D stability analysis of the rock surrounding underground liquified natural gas storage cavern based on COMSOL Multiphysics
19
作者 Chao Zhang Pinjia Duan +4 位作者 Yuke Cheng Na Chen Huan Huang Feng Xiong Shaoqun Dong 《Energy Geoscience》 EI 2024年第3期351-361,共11页
Underground liquified natural gas(LNG)storage is essential in guaranteeing national energy strategic reserves,and its construction is being accelerated.The stability of surrounding rock of underground LNG storage cave... Underground liquified natural gas(LNG)storage is essential in guaranteeing national energy strategic reserves,and its construction is being accelerated.The stability of surrounding rock of underground LNG storage caverns under stress-low temperature coupling effect is the key factor determining the feasibility of LNG storage.First,a mathematical model used for controlling the stress-low temperature coupling and the processes of rock damage evolution is given,followed by a 2-D numerical execution process of the mathematical model mentioned above described based on Comsol Multiphysics and Matlab code.Finally,a series of 2-D simulations are performed to study the influence of LNG storage cavern layout,burial depth,temperature and internal pressure on the stability of surrounding rocks of these underground storage caverns.The results indicate that all the factors mentioned above affect the evolution of deformation and plastic zone of surrounding rocks.The research results contribute to the engineering design of underground LNG storage caverns. 展开更多
关键词 Underground LNG storage Thermo-mechanical(TM)coupling Stability of surrounding rock Low temperature Comsol Multiphysics
下载PDF
Study on creep deformation and energy development of underground surrounding rock under four‐dimensional support
20
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Pengfei Yan Nan Cui Ruichong Zhang 《Deep Underground Science and Engineering》 2024年第1期25-38,共14页
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here... There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support. 展开更多
关键词 coal mines elastic strain energy four‐dimensional support large roadway depth long‐term stability control plastic deformation surrounding rock
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部