The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great sign...The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great significance to study the ecological risk and the accumulation trends of heavy metals in the soil of mining areas for scientific prevention and control of heavy metal pollution.Taking the Taowanbeigou River Basin in the mine concentration area as the research object,the ecological pollution risk and cumulative effect of heavy metals in the soil of the basin were studied by using the comprehensive pollution index method,potential ecological risk assessment method and geoaccumulation index method.On this basis,the cumulative exceeding years of specific heavy metals were predicted by using the early warning model.The comprehensive potential ecological risk of heavy metals in the soil near the Luanchuan mine concentration area is moderate,and the single element Cd is the main ecological risk factor,with a contribution rate of 53.6%.The overall cumulative degrees of Cu and Pb in the soil are“none-moderate”,Zn and Cd are moderate,Mo has reached an extremely strong cumulative level,Hg,As and Cr risks are not obvious,and the overall cumulative risks order is Mo>Cd>Zn>Cu>Pb>Hg.According to the current accumulation rate and taking the risk screening values for soil contamination of agricultural land as the reference standard,the locations over standard rates of Cu,Zn and Cd will exceed 78%in 90years,and the over standard rate of Pb will reach approximately 57%in 200 years.The cumulative exceeding standard periods of As,Cr and Hg are generally long,which basically indicates that these elements do not pose a significant potential threat to the ecological environment.Mining activities will accelerate the accumulation of heavy metals in soil.With the continuous development of mining activities,the potential pollution risk of heavy metals in the soil of mining areas will also increase.展开更多
Due to the rapid growth of the mining sector of Mongolia, the need for preparing mining surveying specialists is increasing significantly. The history of preparing highly educated mining surveying specialists and putt...Due to the rapid growth of the mining sector of Mongolia, the need for preparing mining surveying specialists is increasing significantly. The history of preparing highly educated mining surveying specialists and putting their education into practice in our country is an interesting one. The main center to prepare mining surveying specialists is the School of Mining Engineering of the Mongolian State University of Science and Technology. This paper introduces the work that is being done today to prepare mining surveying specialists in Mongolia and its future purposes.展开更多
Identifying and monitoring the spatiotemporal patterns of potentially contaminated land(PCL) in China is a key concern of ecological governance. However, the dynamics of PCL’s expansion remain unclear nationwide. Int...Identifying and monitoring the spatiotemporal patterns of potentially contaminated land(PCL) in China is a key concern of ecological governance. However, the dynamics of PCL’s expansion remain unclear nationwide. Integrating high-resolution remote sensing images, a land-use/cover change database, crawler data from websites, and other multisource data, we produced a new dataset of China’s PCL in 1990, 2000, 2010, and 2020 using data fusion technology. Then we analyzed the spatiotemporal patterns of China’s PCL from 1990 to 2020. Our study shows that the acquired vector dataset of China’s PCL is of high quality and reliability, with an overall accuracy of 93.21%. The area of China’s PCL has kept growing for the past 30 years, and the growth rate was especially rapid during2000–2010, 2.32 and 6.13 times as rapid as that during 1990–2000 and 2010–2020, respectively. PCL has also been trending toward higher aggregation over markedly enlarged areas and has transferred progressively from north and southeast of China to northwest and southwest of China and Qinghai-Tibet Plateau. The patterns of China’s PCL have been driven by the joint factors of policies, mineral resources, economy, and others, among which policies and the economy have contributed more prominently to the long-term transition.Our study promotes the access to high-quality spatial data of PCL to facilitate environmental governance of mine wastes, pollution and land management.展开更多
Vegetation mapping using field surveys is expensive. Distribution modelling, based on sample surveys, might overcome this challenge. We tested if models trained from sample surveys could be used to predict the distrib...Vegetation mapping using field surveys is expensive. Distribution modelling, based on sample surveys, might overcome this challenge. We tested if models trained from sample surveys could be used to predict the distribution of vegetation types in neighbourhood areas, and how reliable the spatial transferability was. We also tested whether we should use ecological dissimilarity or spatial distance to foresee modelling performance. Maximum entropy models were run for three vegetation types based on a vegetation map within a mountain range. Environmental variables were selected backwards, model complexity was kept low. The models are based on points from a small part of each study site, transferred into the entire sites, and then tested for performance. Environmental distance was tested using principle component analysis. All models had high uncorrected AUC values. The ability to predict presences correctly was low. The ability to predict absences correctly was high. The ability to transfer the distribution model depended on environmental distance, not spatial distance.展开更多
Urban and non-urban settlements in many regions are usually located on the lands bordering shores, rivers, canals or streams. However, housing complexes, landfills, and areas for agriculture and mining are often assig...Urban and non-urban settlements in many regions are usually located on the lands bordering shores, rivers, canals or streams. However, housing complexes, landfills, and areas for agriculture and mining are often assigned to locations without sufficiently detailed hydrographic information about subsequent potential if not actual flow and flooding impacts. Yet, for sustainable community planning with emphasis on harmonizing social, economic, environmental and institutional aspects, such information is essential. This article demonstrates how this need can in part be accommodated by way of digital elevation and wet-area modelling and mapping using the upper component of the Choapa watershed in Chile as a case study. The terrain of this area has sharply incised valleys, with communities, fields and roads strung narrowly along the Choapa River and its tributaries. Above these locations along the Estero de Los Pelambres near the Chile-Argentina border are major mining and mineral refining activities. This article provides modelling and mapping details about the wet-to-moist area zonation along the upper Choapa River valleys, and addresses some of the mining-induced changes from 2000 to 2010.展开更多
The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia,using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a sh...The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia,using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period.Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season(June–October),followed by a fallow during the rabi season(November–February).These cropland areas are not suitable for growing rabi-season rice due to their high water needs,but are suitable for a short-season(≤3 months),low water-consuming grain legumes such as chickpea(Cicer arietinum L.),black gram,green gram,and lentils.Intensification(double-cropping)in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands.Several grain legumes,primarily chickpea,are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region.The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers:(a)rice crop is grown during the primary(kharif)crop growing season or during the north-west monsoon season(June–October);(b)same croplands are left fallow during the second(rabi)season or during the south-east monsoon season(November–February);and(c)ability to support low water-consuming,short-growing season(≤3 months)grain legumes(chickpea,black gram,green gram,and lentils)during rabi season.Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season,because the moisture/water demand of these crops is too high.The study established cropland classes based on the every 16-day 250 m normalized difference vegetation index(NDVI)time series for one year(June 2010–May 2011)of Moderate Resolution Imaging Spectroradiometer(MODIS)data,using spectral matching techniques(SMTs),and extensive field knowledge.Map accuracy was evaluated based on independent ground survey data as well as compared with available sub-national level statistics.The producers’and users’accuracies of the cropland fallow classes were between 75%and 82%.The overall accuracy and the kappa coefficient estimated for rice classes were 82%and 0.79,respectively.The analysis estimated approximately 22.3 Mha of suitable rice-fallow areas in South Asia,with 88.3%in India,0.5%in Pakistan,1.1%in Sri Lanka,8.7%in Bangladesh,1.4%in Nepal,and 0.02%in Bhutan.Decision-makers can target these areas for sustainable intensification of short-duration grain legumes.展开更多
基金supported by the Science and Technology Research Project to Henan Provincial Department of Natural Resources(Henan Natural Resources Letter[2019]373–10)。
文摘The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great significance to study the ecological risk and the accumulation trends of heavy metals in the soil of mining areas for scientific prevention and control of heavy metal pollution.Taking the Taowanbeigou River Basin in the mine concentration area as the research object,the ecological pollution risk and cumulative effect of heavy metals in the soil of the basin were studied by using the comprehensive pollution index method,potential ecological risk assessment method and geoaccumulation index method.On this basis,the cumulative exceeding years of specific heavy metals were predicted by using the early warning model.The comprehensive potential ecological risk of heavy metals in the soil near the Luanchuan mine concentration area is moderate,and the single element Cd is the main ecological risk factor,with a contribution rate of 53.6%.The overall cumulative degrees of Cu and Pb in the soil are“none-moderate”,Zn and Cd are moderate,Mo has reached an extremely strong cumulative level,Hg,As and Cr risks are not obvious,and the overall cumulative risks order is Mo>Cd>Zn>Cu>Pb>Hg.According to the current accumulation rate and taking the risk screening values for soil contamination of agricultural land as the reference standard,the locations over standard rates of Cu,Zn and Cd will exceed 78%in 90years,and the over standard rate of Pb will reach approximately 57%in 200 years.The cumulative exceeding standard periods of As,Cr and Hg are generally long,which basically indicates that these elements do not pose a significant potential threat to the ecological environment.Mining activities will accelerate the accumulation of heavy metals in soil.With the continuous development of mining activities,the potential pollution risk of heavy metals in the soil of mining areas will also increase.
文摘Due to the rapid growth of the mining sector of Mongolia, the need for preparing mining surveying specialists is increasing significantly. The history of preparing highly educated mining surveying specialists and putting their education into practice in our country is an interesting one. The main center to prepare mining surveying specialists is the School of Mining Engineering of the Mongolian State University of Science and Technology. This paper introduces the work that is being done today to prepare mining surveying specialists in Mongolia and its future purposes.
基金Under the auspices of the National Key Research and Development Program (No. 2018YFC1800103, 2018YFC1800106)。
文摘Identifying and monitoring the spatiotemporal patterns of potentially contaminated land(PCL) in China is a key concern of ecological governance. However, the dynamics of PCL’s expansion remain unclear nationwide. Integrating high-resolution remote sensing images, a land-use/cover change database, crawler data from websites, and other multisource data, we produced a new dataset of China’s PCL in 1990, 2000, 2010, and 2020 using data fusion technology. Then we analyzed the spatiotemporal patterns of China’s PCL from 1990 to 2020. Our study shows that the acquired vector dataset of China’s PCL is of high quality and reliability, with an overall accuracy of 93.21%. The area of China’s PCL has kept growing for the past 30 years, and the growth rate was especially rapid during2000–2010, 2.32 and 6.13 times as rapid as that during 1990–2000 and 2010–2020, respectively. PCL has also been trending toward higher aggregation over markedly enlarged areas and has transferred progressively from north and southeast of China to northwest and southwest of China and Qinghai-Tibet Plateau. The patterns of China’s PCL have been driven by the joint factors of policies, mineral resources, economy, and others, among which policies and the economy have contributed more prominently to the long-term transition.Our study promotes the access to high-quality spatial data of PCL to facilitate environmental governance of mine wastes, pollution and land management.
文摘Vegetation mapping using field surveys is expensive. Distribution modelling, based on sample surveys, might overcome this challenge. We tested if models trained from sample surveys could be used to predict the distribution of vegetation types in neighbourhood areas, and how reliable the spatial transferability was. We also tested whether we should use ecological dissimilarity or spatial distance to foresee modelling performance. Maximum entropy models were run for three vegetation types based on a vegetation map within a mountain range. Environmental variables were selected backwards, model complexity was kept low. The models are based on points from a small part of each study site, transferred into the entire sites, and then tested for performance. Environmental distance was tested using principle component analysis. All models had high uncorrected AUC values. The ability to predict presences correctly was low. The ability to predict absences correctly was high. The ability to transfer the distribution model depended on environmental distance, not spatial distance.
文摘Urban and non-urban settlements in many regions are usually located on the lands bordering shores, rivers, canals or streams. However, housing complexes, landfills, and areas for agriculture and mining are often assigned to locations without sufficiently detailed hydrographic information about subsequent potential if not actual flow and flooding impacts. Yet, for sustainable community planning with emphasis on harmonizing social, economic, environmental and institutional aspects, such information is essential. This article demonstrates how this need can in part be accommodated by way of digital elevation and wet-area modelling and mapping using the upper component of the Choapa watershed in Chile as a case study. The terrain of this area has sharply incised valleys, with communities, fields and roads strung narrowly along the Choapa River and its tributaries. Above these locations along the Estero de Los Pelambres near the Chile-Argentina border are major mining and mineral refining activities. This article provides modelling and mapping details about the wet-to-moist area zonation along the upper Choapa River valleys, and addresses some of the mining-induced changes from 2000 to 2010.
基金supported by two CGIAR Research Programs:Dryland Cereals,Grain legumes and WLE.The research was also supported by the global food security support analysis data at 30 m project(GFSAD30http://geography.wr.usgs.gov/science/croplands/https://croplands.org/)funded by the NASA MEaSUREs[grant number:NNH13AV82I](Making Earth System Data Records for Use in Research Environments)funding obtained through NASA ROSES solicitation as well as by the Land Change Science(LCS),Land Remote Sensing(LRS),and Climate Land Use Change Mission Area Programs of the U.S.Geological Survey(USGS).
文摘The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia,using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period.Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season(June–October),followed by a fallow during the rabi season(November–February).These cropland areas are not suitable for growing rabi-season rice due to their high water needs,but are suitable for a short-season(≤3 months),low water-consuming grain legumes such as chickpea(Cicer arietinum L.),black gram,green gram,and lentils.Intensification(double-cropping)in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands.Several grain legumes,primarily chickpea,are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region.The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers:(a)rice crop is grown during the primary(kharif)crop growing season or during the north-west monsoon season(June–October);(b)same croplands are left fallow during the second(rabi)season or during the south-east monsoon season(November–February);and(c)ability to support low water-consuming,short-growing season(≤3 months)grain legumes(chickpea,black gram,green gram,and lentils)during rabi season.Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season,because the moisture/water demand of these crops is too high.The study established cropland classes based on the every 16-day 250 m normalized difference vegetation index(NDVI)time series for one year(June 2010–May 2011)of Moderate Resolution Imaging Spectroradiometer(MODIS)data,using spectral matching techniques(SMTs),and extensive field knowledge.Map accuracy was evaluated based on independent ground survey data as well as compared with available sub-national level statistics.The producers’and users’accuracies of the cropland fallow classes were between 75%and 82%.The overall accuracy and the kappa coefficient estimated for rice classes were 82%and 0.79,respectively.The analysis estimated approximately 22.3 Mha of suitable rice-fallow areas in South Asia,with 88.3%in India,0.5%in Pakistan,1.1%in Sri Lanka,8.7%in Bangladesh,1.4%in Nepal,and 0.02%in Bhutan.Decision-makers can target these areas for sustainable intensification of short-duration grain legumes.