Susceptibility weighted imaging(SWI) is a recently developed magnetic resonance imaging(MRI) technique that is increasingly being used to narrow the differential diagnosis of many neurologic disorders. It exploits the...Susceptibility weighted imaging(SWI) is a recently developed magnetic resonance imaging(MRI) technique that is increasingly being used to narrow the differential diagnosis of many neurologic disorders. It exploits the magnetic susceptibility differences of various compounds including deoxygenated blood, blood products, iron and calcium, thus enabling a new source of contrast in MR. In this review, we illustrate its basic clinical applications in neuroimaging. SWI is based on a fully velocity-compensated, high-resolution, three dimensional gradientecho sequence using magnitude and phase images either separately or in combination with each other, in order to characterize brain tissue. SWI is particularly useful in the setting of trauma and acute neurologic presentations suggestive of stroke, but can also characterize occult low-flow vascular malformations, cerebral microbleeds, intracranial calcifications, neurodegenerative diseases and brain tumors. Furthermore, advanced MRI post-processing technique with quantitative susceptibility mapping, enables detailed anatomical differentiation based on quantification of brain iron from SWI raw data.展开更多
Diffuse axonal injury(DAI)is axonal and small vessel injury produced by a sudden acceleration of the head by an external force,and is a major cause of death and severe disability(Paterakis et al.,2000).Prognosis i...Diffuse axonal injury(DAI)is axonal and small vessel injury produced by a sudden acceleration of the head by an external force,and is a major cause of death and severe disability(Paterakis et al.,2000).Prognosis is poorer in patients with apparent hemorrhage than in those without(Paterakis et al.,2000).Therefore,it is important to identify the presence and precise position of hemorrhagic foci for a more accurate diagnosis.CT and magnetic resonance imaging(MRI)have long been applied in the diagnosis of DAI, but they are not sensitive enough for the detection of small hemorrhagic foci, and cannot meet the requirements for early diagnosis. A major advance in MRI has been the development of susceptibility weighted imaging (SWI), which has greatly increased the ability to detect small hemorrhagic foci after DAI (Ashwal et al., 2006).展开更多
AIM:To review the literature on the assessment of venous vessels to estimate the penumbra on T2*w imaging and susceptibility-weighted imaging (SWI). METHODS:Literature that reported on the assessment of penumbra by T2...AIM:To review the literature on the assessment of venous vessels to estimate the penumbra on T2*w imaging and susceptibility-weighted imaging (SWI). METHODS:Literature that reported on the assessment of penumbra by T2*w imaging or SWI and used a validation method was included. PubMed and relevant stroke and magnetic resonance imaging (MRI) related conference abstracts were searched. Abstracts that had overlapping content with full text articles were excluded. The retrieved literature was scanned for further relevant references. Only clinical literature published in English was considered, patients with Moya-Moya syndrome were disregarded. Data is given as cumulative absolute and relative values, ranges are given where appropriate. RESULTS:Forty-three publications including 1145 patients could be identified. T2*w imaging was used in 16 publications (627 patients), SWI in 26 publications (453 patients). Only one publication used both (65 patients). The cumulative presence of hypointense vessel sign was 54% (range 32%-100%) for T2* (668 patients) and 81% (range 34%-100%) for SWI (334 patients). There was rare mentioning of interrater agreement (6 publications, 210 patients) and reliability (1 publication, 20 patients) but the numbers reported ranged from good to excellent. In most publications (n = 22) perfusion MRI was used as a validation method (617 patients). More patients were scanned in the subacute than in the acute phase (596 patients vs 320 patients). Clinical outcome was reported in 13 publications (521 patients) but was not consistent. CONCLUSION:The low presence of vessels signs on T2*w imaging makes SWI much more promising. More research is needed to obtain formal validation and quantification.展开更多
Cerebrovascular disease is one of the fatal causes of Fabry disease (FD). Brain magnetic resonance imaging findings typically show lacunar infarcts in young patients with FD, but brain hemorrhages in FD are rarely rep...Cerebrovascular disease is one of the fatal causes of Fabry disease (FD). Brain magnetic resonance imaging findings typically show lacunar infarcts in young patients with FD, but brain hemorrhages in FD are rarely reported. We report two cases of FD focusing on cerebral microbleeds (CMBs). Susceptibility-weighted imaging (SWI) and T2*-weighted imaging reveal several lobar and deep CMBs in two patients with no medical history of stroke symptoms, hypertension, and anticoagulant/antiplatelet treatment. SWI can detect a greater number of CMBs than T2*-weighted imaging. Thus, SWI is an excellent tool for identifying underlying CMBs in FD.展开更多
Susceptibility weighted imaging(SWI)is a relatively new magnetic resonance imaging(MRI)technique that uses the difference in tissue magnetic susceptibility to image,and has unique value compared to traditional magneti...Susceptibility weighted imaging(SWI)is a relatively new magnetic resonance imaging(MRI)technique that uses the difference in tissue magnetic susceptibility to image,and has unique value compared to traditional magnetic resonance imaging.This article summarizes its application in the central nervous system and provides a reference for imaging diagnosis and clinical treatment.展开更多
BACKGROUND It is of vital importance to find radiologic biomarkers that can accurately predict treatment response. Usually, the initiation of antiangiogenic therapy causes a rapid decrease in the contrast enhancing tu...BACKGROUND It is of vital importance to find radiologic biomarkers that can accurately predict treatment response. Usually, the initiation of antiangiogenic therapy causes a rapid decrease in the contrast enhancing tumor. However, the treatment response is observed only in a fraction of patients due to the partial radiological response secondary to stabilization of abnormal vessels which does not essentially indicate a true antitumor effect. Perfusion-weighted magnetic resonance imaging(PWMRI) techniques have shown implicitness as a strong imaging biomarker for gliomas since they give hemodynamic information of blood vessels. Hence, there is a rapid expansion of PW-MRI related studies and clinical applications.AIM To determine the diagnostic performance of PW-MRI techniques including:(A)dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI); and(B)dynamic susceptibility contrast magnetic resonance imaging(DSC-MRI) for evaluating response to antiangiogenic therapy in patients with recurrent gliomas.METHODS Databases such as PubMed(MEDLINE included), EMBASE, and Google Scholar were searched for relevant original articles. The included studies were assessed for methodological quality with the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Medical imaging follow-up or histopathological analysis was used as the reference standard. The data were extracted by two reviewers independently, and then the sensitivity, specificity, summary receiver operating characteristic curve, area under the curve(AUC), and heterogeneity were calculated using Meta-Disc 1.4 software.RESULTS This study analyzed a total of six articles. The overall sensitivity for DCE-MRI and DSC-MRI was 0.69 [95% confidence interval(CI): 0.53-0.82], and the specificity was 0.99(95%CI: 0.93-1) by a random effects model(DerSimonianeeLaird model). The likelihood ratio(LR) +, LR-, and diagnostic odds ratio(DOR)were 12.84(4.54-36.28), 0.35(0.22-0.53), and 24.44(7.19-83.06), respectively. The AUC(± SE) was 0.9921(± 0.0120), and the Q* index(± SE) was 0.9640(± 0.0323).For DSC-MRI, the sensitivity was 0.73, the specificity was 0.98, the LR+ was 7.82,the LR-was 0.32, the DOR was 31.65, the AUC(± SE) was 0.9925(± 0.0132), and the Q* index was 0.9649(± 0.0363). For DCE-MRI, the sensitivity was 0.41, the specificity was 0.97, the LR+ was 5.34, the LR-was 0.71, the DOR was 8.76, the AUC(± SE) was 0.9922(± 0.2218), and the Q* index was 0.8935(± 0.3037).CONCLUSION This meta-analysis demonstrated a beneficial value of PW-MRI(DSC-MRI and DCE-MRI) in monitoring the response of recurrent gliomas to antiangiogenic therapy, with reasonable sensitivity, specificity, +LR, and-LR.展开更多
<strong>Introduction:</strong> Owing to the advanced development of MRI science, it causes obvious great changes of many diseases that affect the female genital system and affect their fertility. Hemorrhag...<strong>Introduction:</strong> Owing to the advanced development of MRI science, it causes obvious great changes of many diseases that affect the female genital system and affect their fertility. Hemorrhagic gynecological diseases especially endometriosis affect young females and cause cyclic pain, in addition to infertility. So early detection is essential for proper treatment. Susceptibility-weighted (SWI) as one of the most recent newly created MRI sequences is highly sensitive to detect products of hemorrhage within different gynecologic disorders with 94.7% sensitivity being more meticulous than conventional MRI sequences as T1 and T2. <strong>Aim of the Work:</strong> A comparison between T1 and T2 as conventional MRI sequences with susceptibility-weighted images (SWI) in many gynecologic disorders by the detection of the presence of internal products of hemorrhage at any stage. <strong>Subjects and Methods:</strong> 48 consecutive patients from Benha University clinics (age range, 17 - 60 years;mean age, 35.67 years). The patients included in the study were presenting with pelvic pain, irregular menses, Dyspareunia, and swelling. All with suspicious diagnosis of ovarian and extra-ovarian lesions. 38 patients out of the 48 patients were known to contain hemorrhagic disorder;all the patients underwent MRI routine pelvis protocol adding SWI sequence. <strong>Results:</strong> There was a greatly significant difference between SWI and conventional MRI sequences T1and T2 with sensitivity 94.7%, 57.9% and 33.3% respectively. <strong>Conclusion:</strong> SWI is a promising tool in the evaluation of hemorrhagic foci within different gynecological disorders. The great ability of detecting hemosiderin foci increases the value of SWI over conventional MRI or US.展开更多
文摘Susceptibility weighted imaging(SWI) is a recently developed magnetic resonance imaging(MRI) technique that is increasingly being used to narrow the differential diagnosis of many neurologic disorders. It exploits the magnetic susceptibility differences of various compounds including deoxygenated blood, blood products, iron and calcium, thus enabling a new source of contrast in MR. In this review, we illustrate its basic clinical applications in neuroimaging. SWI is based on a fully velocity-compensated, high-resolution, three dimensional gradientecho sequence using magnitude and phase images either separately or in combination with each other, in order to characterize brain tissue. SWI is particularly useful in the setting of trauma and acute neurologic presentations suggestive of stroke, but can also characterize occult low-flow vascular malformations, cerebral microbleeds, intracranial calcifications, neurodegenerative diseases and brain tumors. Furthermore, advanced MRI post-processing technique with quantitative susceptibility mapping, enables detailed anatomical differentiation based on quantification of brain iron from SWI raw data.
基金supported by a grant from the Key Science and Technology Development Project of Nanjing Medical University in ChinaNo.08NMU054
文摘Diffuse axonal injury(DAI)is axonal and small vessel injury produced by a sudden acceleration of the head by an external force,and is a major cause of death and severe disability(Paterakis et al.,2000).Prognosis is poorer in patients with apparent hemorrhage than in those without(Paterakis et al.,2000).Therefore,it is important to identify the presence and precise position of hemorrhagic foci for a more accurate diagnosis.CT and magnetic resonance imaging(MRI)have long been applied in the diagnosis of DAI, but they are not sensitive enough for the detection of small hemorrhagic foci, and cannot meet the requirements for early diagnosis. A major advance in MRI has been the development of susceptibility weighted imaging (SWI), which has greatly increased the ability to detect small hemorrhagic foci after DAI (Ashwal et al., 2006).
文摘AIM:To review the literature on the assessment of venous vessels to estimate the penumbra on T2*w imaging and susceptibility-weighted imaging (SWI). METHODS:Literature that reported on the assessment of penumbra by T2*w imaging or SWI and used a validation method was included. PubMed and relevant stroke and magnetic resonance imaging (MRI) related conference abstracts were searched. Abstracts that had overlapping content with full text articles were excluded. The retrieved literature was scanned for further relevant references. Only clinical literature published in English was considered, patients with Moya-Moya syndrome were disregarded. Data is given as cumulative absolute and relative values, ranges are given where appropriate. RESULTS:Forty-three publications including 1145 patients could be identified. T2*w imaging was used in 16 publications (627 patients), SWI in 26 publications (453 patients). Only one publication used both (65 patients). The cumulative presence of hypointense vessel sign was 54% (range 32%-100%) for T2* (668 patients) and 81% (range 34%-100%) for SWI (334 patients). There was rare mentioning of interrater agreement (6 publications, 210 patients) and reliability (1 publication, 20 patients) but the numbers reported ranged from good to excellent. In most publications (n = 22) perfusion MRI was used as a validation method (617 patients). More patients were scanned in the subacute than in the acute phase (596 patients vs 320 patients). Clinical outcome was reported in 13 publications (521 patients) but was not consistent. CONCLUSION:The low presence of vessels signs on T2*w imaging makes SWI much more promising. More research is needed to obtain formal validation and quantification.
文摘Cerebrovascular disease is one of the fatal causes of Fabry disease (FD). Brain magnetic resonance imaging findings typically show lacunar infarcts in young patients with FD, but brain hemorrhages in FD are rarely reported. We report two cases of FD focusing on cerebral microbleeds (CMBs). Susceptibility-weighted imaging (SWI) and T2*-weighted imaging reveal several lobar and deep CMBs in two patients with no medical history of stroke symptoms, hypertension, and anticoagulant/antiplatelet treatment. SWI can detect a greater number of CMBs than T2*-weighted imaging. Thus, SWI is an excellent tool for identifying underlying CMBs in FD.
文摘Susceptibility weighted imaging(SWI)is a relatively new magnetic resonance imaging(MRI)technique that uses the difference in tissue magnetic susceptibility to image,and has unique value compared to traditional magnetic resonance imaging.This article summarizes its application in the central nervous system and provides a reference for imaging diagnosis and clinical treatment.
文摘BACKGROUND It is of vital importance to find radiologic biomarkers that can accurately predict treatment response. Usually, the initiation of antiangiogenic therapy causes a rapid decrease in the contrast enhancing tumor. However, the treatment response is observed only in a fraction of patients due to the partial radiological response secondary to stabilization of abnormal vessels which does not essentially indicate a true antitumor effect. Perfusion-weighted magnetic resonance imaging(PWMRI) techniques have shown implicitness as a strong imaging biomarker for gliomas since they give hemodynamic information of blood vessels. Hence, there is a rapid expansion of PW-MRI related studies and clinical applications.AIM To determine the diagnostic performance of PW-MRI techniques including:(A)dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI); and(B)dynamic susceptibility contrast magnetic resonance imaging(DSC-MRI) for evaluating response to antiangiogenic therapy in patients with recurrent gliomas.METHODS Databases such as PubMed(MEDLINE included), EMBASE, and Google Scholar were searched for relevant original articles. The included studies were assessed for methodological quality with the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Medical imaging follow-up or histopathological analysis was used as the reference standard. The data were extracted by two reviewers independently, and then the sensitivity, specificity, summary receiver operating characteristic curve, area under the curve(AUC), and heterogeneity were calculated using Meta-Disc 1.4 software.RESULTS This study analyzed a total of six articles. The overall sensitivity for DCE-MRI and DSC-MRI was 0.69 [95% confidence interval(CI): 0.53-0.82], and the specificity was 0.99(95%CI: 0.93-1) by a random effects model(DerSimonianeeLaird model). The likelihood ratio(LR) +, LR-, and diagnostic odds ratio(DOR)were 12.84(4.54-36.28), 0.35(0.22-0.53), and 24.44(7.19-83.06), respectively. The AUC(± SE) was 0.9921(± 0.0120), and the Q* index(± SE) was 0.9640(± 0.0323).For DSC-MRI, the sensitivity was 0.73, the specificity was 0.98, the LR+ was 7.82,the LR-was 0.32, the DOR was 31.65, the AUC(± SE) was 0.9925(± 0.0132), and the Q* index was 0.9649(± 0.0363). For DCE-MRI, the sensitivity was 0.41, the specificity was 0.97, the LR+ was 5.34, the LR-was 0.71, the DOR was 8.76, the AUC(± SE) was 0.9922(± 0.2218), and the Q* index was 0.8935(± 0.3037).CONCLUSION This meta-analysis demonstrated a beneficial value of PW-MRI(DSC-MRI and DCE-MRI) in monitoring the response of recurrent gliomas to antiangiogenic therapy, with reasonable sensitivity, specificity, +LR, and-LR.
文摘<strong>Introduction:</strong> Owing to the advanced development of MRI science, it causes obvious great changes of many diseases that affect the female genital system and affect their fertility. Hemorrhagic gynecological diseases especially endometriosis affect young females and cause cyclic pain, in addition to infertility. So early detection is essential for proper treatment. Susceptibility-weighted (SWI) as one of the most recent newly created MRI sequences is highly sensitive to detect products of hemorrhage within different gynecologic disorders with 94.7% sensitivity being more meticulous than conventional MRI sequences as T1 and T2. <strong>Aim of the Work:</strong> A comparison between T1 and T2 as conventional MRI sequences with susceptibility-weighted images (SWI) in many gynecologic disorders by the detection of the presence of internal products of hemorrhage at any stage. <strong>Subjects and Methods:</strong> 48 consecutive patients from Benha University clinics (age range, 17 - 60 years;mean age, 35.67 years). The patients included in the study were presenting with pelvic pain, irregular menses, Dyspareunia, and swelling. All with suspicious diagnosis of ovarian and extra-ovarian lesions. 38 patients out of the 48 patients were known to contain hemorrhagic disorder;all the patients underwent MRI routine pelvis protocol adding SWI sequence. <strong>Results:</strong> There was a greatly significant difference between SWI and conventional MRI sequences T1and T2 with sensitivity 94.7%, 57.9% and 33.3% respectively. <strong>Conclusion:</strong> SWI is a promising tool in the evaluation of hemorrhagic foci within different gynecological disorders. The great ability of detecting hemosiderin foci increases the value of SWI over conventional MRI or US.