In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of t...In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.展开更多
This paper presents a restricted SIRmathematicalmodel to analyze the evolution of a contagious infectious disease outbreak(COVID-19)using available data.The new model focuses on two main concepts:first,it can present ...This paper presents a restricted SIRmathematicalmodel to analyze the evolution of a contagious infectious disease outbreak(COVID-19)using available data.The new model focuses on two main concepts:first,it can present multiple waves of the disease,and second,it analyzes how far an infection can be eradicated with the help of vaccination.The stability analysis of the equilibrium points for the suggested model is initially investigated by identifying the matching equilibrium points and examining their stability.The basic reproduction number is calculated,and the positivity of the solutions is established.Numerical simulations are performed to determine if it is multipeak and evaluate vaccination’s effects.In addition,the proposed model is compared to the literature already published and the effectiveness of vaccination has been recorded.展开更多
In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start wi...In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.展开更多
In view of the pressure time of emergency rescue against the infectious diseases,a mathematical model to optimize the location of emergency rescue centers is proposed.The model takes full account of the spread functio...In view of the pressure time of emergency rescue against the infectious diseases,a mathematical model to optimize the location of emergency rescue centers is proposed.The model takes full account of the spread function of infectious diseases,the cycle of pulse vaccination,the distance between the demand area and the emergency rescue centers,as well as the building and maintenance cost for the emergency rescue center,and so on.At the same time,the model integrates the traditional location selection models which are the biggest cover model,the p-center model and the p-median model,and it embodies the principles of fairness and efficiency for the emergency center location.Finally,a computation of an example arising from practice provides satisfactory results.展开更多
In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no end...In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.展开更多
In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch in...In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].展开更多
In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By u...In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.展开更多
文摘In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.
基金Research Partnership Program no.RP-21-09-06 from the Deanship of Scientific Research of Imam Mohammad Ibn Saud Islamic University(IMSIU).
文摘This paper presents a restricted SIRmathematicalmodel to analyze the evolution of a contagious infectious disease outbreak(COVID-19)using available data.The new model focuses on two main concepts:first,it can present multiple waves of the disease,and second,it analyzes how far an infection can be eradicated with the help of vaccination.The stability analysis of the equilibrium points for the suggested model is initially investigated by identifying the matching equilibrium points and examining their stability.The basic reproduction number is calculated,and the positivity of the solutions is established.Numerical simulations are performed to determine if it is multipeak and evaluate vaccination’s effects.In addition,the proposed model is compared to the literature already published and the effectiveness of vaccination has been recorded.
文摘In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.
基金The National Natural Science Foundation of China(No.70671021)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘In view of the pressure time of emergency rescue against the infectious diseases,a mathematical model to optimize the location of emergency rescue centers is proposed.The model takes full account of the spread function of infectious diseases,the cycle of pulse vaccination,the distance between the demand area and the emergency rescue centers,as well as the building and maintenance cost for the emergency rescue center,and so on.At the same time,the model integrates the traditional location selection models which are the biggest cover model,the p-center model and the p-median model,and it embodies the principles of fairness and efficiency for the emergency center location.Finally,a computation of an example arising from practice provides satisfactory results.
基金This work is supported by the National Sciences Foundation of China (10471040)the Youth Science Foundations of Shanxi Province (20021003).
文摘In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.
基金supported by Japan Society for the Promotion of Science (Grant Scientific Research (c), No. 24540219 to the first author, JSPS Fellows, No.237213 to the second author, and No. 222176 to the third author)
文摘In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].
基金supported in part by JSPS Fellows,No.237213 of Japan Society for the Promotion of Science to the first authorthe Grant MTM2010-18318 of the MICINN,Spanish Ministry of Science and Innovation to the second authorScientific Research (c),No.21540230 of Japan Society for the Promotion of Science to the third author
文摘In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.