The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur...The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.展开更多
The dynamic characteristics of a belt conveyor are determined to a large extent by the properties of the belt. This paper describes experiments designed to establish the dynamic properties of belting material. The dyn...The dynamic characteristics of a belt conveyor are determined to a large extent by the properties of the belt. This paper describes experiments designed to establish the dynamic properties of belting material. The dynamic elastic modulus, viscous damping and rheologicat constants of the belt were measured. Several properties were studied as a function of the tensile loading on the belt. These included longitudinal vibration, the natural vibration frequency in the transverse direction and the response to an impulse excitation. Vibration response was observed under several different excitation frequencies. Most of these properties have not been tested previously under conditions appropriate for the ISO/DP9856 standard. Two types of belt were tested, a steel reinforced belt and a fabric reinforced belt. The test equipment was built to provide data appropriate for designing belt conveyors. It was observed that the stress wave propagation speed increased with tensile load and that tensile load was the main factor influencing longitudinal vibrations.展开更多
In order to clarify the charging characteristics of suspension droplets in ion flow field under different temperatures and humidity,the effective charging factor used to characterize the charging characteristics of su...In order to clarify the charging characteristics of suspension droplets in ion flow field under different temperatures and humidity,the effective charging factor used to characterize the charging characteristics of suspension droplets is introduced in this paper,and a calculation method of charging factor is proposed based on the upstream finite element method(FEM).Then,the charging factor under different temperatures and humidity is calculated,and the analytic expression of the charging factor considering the influence of temperature and humidity is obtained by fitting the calculation results.The influence of suspension droplets on the ion flow field is analyzed.The results show that the charging factor is small and increases little with the relative humidity when the relative humidity is less than 60%,and the charging factor is large and increases rapidly with the relative humidity when the relative humidity is more than 60%.At the same relative humidity,the charging factor increases linearly with the temperature.The influence of charged suspension droplets on the ion flow field can be ignored when the relative humidity is less than 60%and must be considered under high temperature and humidity.The calculation method and analytic expression of the charging factor proposed in this paper can be used to model of ion flow field considering the influence of temperature and humidity and provide technical support for the construction of HVDC transmission lines across high temperature and humidity.展开更多
Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal ri...Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal rigidity, the structural form and the corresponding foundation type of middle pylon are different from those of the ordinary steel pylon, and the complicated dynamic characteristics make the calculation quite difficult. In this article, exploration has been made in selection of similarity ratio and model materials, section simulation, restriction conditions simulation, fixing of mass blocks, fabrication scheme and testing method by taking into account different construction and working conditions such as restriction conditions and working environment of a three-pylon suspension bridge, to conduct the test experimental design of the dynamic behavior of the middle pylon, with the purpose to reveal its dynamic characteristics and make comparison and analysis with theoretical assumptions, to provide basis for anti-wind and anti-seismic design and reference for the design and research of three-pylon two-span suspension bridges in the future.展开更多
High speed and large capacity belt conveyor is the main development trend. In the design, calculated and used of belt conveyor must be considered the high speed, large capacity, dynamic load. This paper starts from th...High speed and large capacity belt conveyor is the main development trend. In the design, calculated and used of belt conveyor must be considered the high speed, large capacity, dynamic load. This paper starts from the analysis of conveyor belt transverse vibration. Through calculate transverse vibration natural frequency of conveyor belt, and analyze the lateral stability of belt conveyor.展开更多
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
The central buckle, which is often used in a suspension bridge, can improve bridges' performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and brid...The central buckle, which is often used in a suspension bridge, can improve bridges' performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and bridge-deck driving comfort of a long-span suspension bridge is studied by using a case study of Siduhe Suspension Bridge in China. Based on the finite element software ANSYS and independently complied program, the influence of the central buckle on the structure force-applied characteristics of a long-span suspension bridge has been explored. The results show that the huge increases of natural frequencies can result in the presence of central buckles because of the increases of bending and torsional rigidities. The central buckle basically makes the stiffening girders and cables within the triangular area covered as a relatively approximate rigid area. Hence, the central buckle can reduce the torsional displacement of the main girder. However, the increases of bending and torsional rigidities have little influence on the impact factor, which is obtained by using vehicle-bridge coupled vibration analysis. This means that the central buckle has little effect on the comfort indices. In addition, it is found that the central buckle can enhance the bridge deck's driving stability due to the decrease of the torsional displacements of the main girder.展开更多
An asymmetric damping force generation algorithm is originally proposed to yield the asymmetric force-velocity characteristics for the symmetric magneto-rheological (MR) dampers. The command current is formulated in...An asymmetric damping force generation algorithm is originally proposed to yield the asymmetric force-velocity characteristics for the symmetric magneto-rheological (MR) dampers. The command current is formulated in an asymmetric manner to excite the symmetric MR dampers by employing the “on-off” control law in response to the direction of velocity, and a smooth modulation function is developed without phase shift to suppress strong transients in the damping forces caused by the current-switching discontinuity. The effectiveness of the proposed algorithm is evaluated by analyzing the dynamic responses of a quarter-vehicle suspension system with a symmetric MR-damper by modulating the command current into the asymmetric manner. The simulation results show that the proposed algorithm could achieve a better compromise between the conflicting requirements of the asymmetric damping force ratio and the force-velocity curve smoothness, and the asymmetric damping MR-suspension design can ideally improve the road holding and ride performances of vehicle motion. The proposed algorithm can be generally incorporated with a controller synthesis to realize an intelligent vehicle suspension design with the symmetric MR dampers.展开更多
The dynamic characteristics of three-tower and two-span suspension bridge are analyzed at different global temperatures. An equivalent cable inner force method is proposed to consider temperature effects and to study ...The dynamic characteristics of three-tower and two-span suspension bridge are analyzed at different global temperatures. An equivalent cable inner force method is proposed to consider temperature effects and to study the effects of environmental temperature on dynamic characteristics of Taizhou Yangtze River Bridge. The result demonstrates that the effects of temperature can not be neglected in static or dynamic analysis of Taizhou Yangtze River Bridge. The relationship between temperature and frequency is negative. The effects of temperature should be taken into account in experimental modal analysis of long-span bridges and damage identification.展开更多
A 3D finite element model for the Taizhou Yangtze River Bridge,the first triple-tower long-span suspension bridge in China,is established based on the nonlinear finite element software ABAQUS,and the dynamic character...A 3D finite element model for the Taizhou Yangtze River Bridge,the first triple-tower long-span suspension bridge in China,is established based on the nonlinear finite element software ABAQUS,and the dynamic characteristics of the bridge are analyzed using the LANCZOS eigenvalue solution method. The study focuses on the effects of the vertical,lateral and torsional stiffness of the steel box girder,the rigid central buckle and the elastic restraints connecting the towers and the steel box girder on the dynamic characteristics of the triple-tower suspension bridge. Our results show that,in general,the dynamic characteristics of the triple-tower suspension bridge are similar to those of two-tower suspension bridges. The vertical,lateral and torsional stiffness of the steel box girder have different effects on the dynamic characteristics of triple-tower suspension bridges. The elastic re-straints have a more significant effect on the dynamic characteristics than the central buckle,and decreasing the stiffness of the elastic restraints results in the appearance of a longitudinal floating vibration mode of the bridge. Also,rigid central buckles have a greater influence on the dynamic characteristics of triple-tower suspension bridges than on those of two-tower suspension bridges. The results obtained could serve as a valuable numerical reference for analyzing and designing super-long-span triple-tower suspension bridges.展开更多
Based on the multiple wedge effects, a petal-shaped capsule robot(PCR) is proposed, and the self-centering phenomenon of the PCR is discovered. For investigating the self-centering characteristics, an innovative conce...Based on the multiple wedge effects, a petal-shaped capsule robot(PCR) is proposed, and the self-centering phenomenon of the PCR is discovered. For investigating the self-centering characteristics, an innovative concept of the instantaneous fluid membrane(FM) thickness, along with the dynamic FM thickness, is proposed; thus a dynamic FM thickness model and a hydrodynamic pressure(HP) model are derived when the PCR axis deviates from the pipe axis under the effect of gravity. A kinematics equation during suspending process in the vertical direction and a swimming kinematics equation in axial direction are derived respectively. Four capsule robots with different eccentricities of the tiles were manufactured and tested, the theoretical and experimental results show that the HP gradient is a fundamental reason for the self-centering phenomenon. The PCR with the self-centering ability can directly avoid the contact with the bottom of the gastrointestinal(GI) tract, achieving the excellent obstacle surmounting ability in the GI complex environment with the less twisted impact on the GI tract, which has a promising application prospect in the GI diagnosis.展开更多
To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random ex...To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random excitations of the test platforms of respectively the left and the right wheels according to actual running conditions of a vehicle, and explored the changing patterns of the kinematic characteristic parameters in the process of suspension motion. The irrationality of the suspension guiding mechanism design was pointed out through simulation and analysis, and the existent problems of the guiding mechanism were optimized and calculated. The results show that all the front-wheel alignment parameters, including the camber, the toe, the caster and the inclination, only slightly change within corresponding allowable ranges in design before and after optimization. The optimization reduces the variation of the wheel-center distance from 47.01 mm to a change of 8.28 mm within the allowable range of ?10 mm to 10 mm, promising an improvement of the vehicle steering stability. The optimization also confines the front-wheel sideways slippage to a much smaller change of 2.23 mm; this helps to greatly reduce the wear of tires and assure the straight running stability of the vehicle.展开更多
in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are a...in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are also formulated when the hoister is used for straining. Based on the belt conveyor of main inclined shaft in Chengzhuang coal mine, the driving torque, driving power and starting-speed characteristic of each electric motor are studied and measured when multi-roller variable-frequency drive (power distribution 2∶1) is used. The optimal control and the optimal starting-acceleration of the multi-roller variable-frequency drive are determined by a large number of industrial experiments and theoretical calculations.展开更多
A new outboard inductive damping valve without any electronic control system is developed. Its working principle,structure and external characteristic are studied. Its mathematical model is presented and its damping c...A new outboard inductive damping valve without any electronic control system is developed. Its working principle,structure and external characteristic are studied. Its mathematical model is presented and its damping characteristic is investigated on the basis of fluid continuity equation,differential equations of motion and Bernoulli equation. The influence of the valve parameters on the damping characteristic is studied numerically. The effects of outboard inductive damping valve and common damping valve on ride and tire load are compared also. The external characteristic of the valve is verified in bench test. The results show that the valve’s mathematical model is quite accurate and the developed valve can be adjust in two stages,which can also meet the requirements of the dynamic characteristic of the vehicle suspension system.展开更多
Based on the theory and the practical experiences of linearity design of feasible design area and inverse solution of non linear outer characteristic of suspension shock absorber, in accordance with non linearity ou...Based on the theory and the practical experiences of linearity design of feasible design area and inverse solution of non linear outer characteristic of suspension shock absorber, in accordance with non linearity outer characteristic formed by open up damping coefficient, full open damping coefficient and smoothness to safety ratio of suspension shock absorber, a method and a research conclusion of the feasible design and inverse solution for the basic problems of designing and inverse solution of non linear outer characteristic of suspension damping components are provided.展开更多
无铁芯超导直线同步电机(superconducting linear synchronous motor,SLSM)具有推力密度高、工作气隙大等优势,是超导磁浮列车的动力核心。由于会不可避免地受到弯道、道岔、横风和电源谐波等因素的影响,磁浮列车在运行过程中将发生多...无铁芯超导直线同步电机(superconducting linear synchronous motor,SLSM)具有推力密度高、工作气隙大等优势,是超导磁浮列车的动力核心。由于会不可避免地受到弯道、道岔、横风和电源谐波等因素的影响,磁浮列车在运行过程中将发生多自由度运动,使电机次级姿态发生滚转或偏移,致使超导直线电机的电磁力性能发生改变,进而影响列车的运行稳定性。针对多变电机次级姿态下高温超导直线同步电机的三维力特性展开研究,首先分析悬浮车体多自由度运动对直线电机次级姿态的影响,并建立计算SLSM三维电磁力的有限元模型;其次,通过搭建超导同步直线电机样机,实验验证模型的有效性;最后,基于该模型研究无铁芯SLSM次级在发生横向偏移、法向偏移、侧滚、俯仰以及偏航条件下的三维电磁力输出特性及其变化规律,为超导磁浮列车运行性能优化提供了理论依据。展开更多
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z416)the Key Project of the National Natural Science Foundation of China(No.50538020)+2 种基金the National Science Fund for Distinguished Young Scholars(No.50725828)the National Natural Science Foundation of China for Young Scholars(No.50608017)the Ph.D. Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.
文摘The dynamic characteristics of a belt conveyor are determined to a large extent by the properties of the belt. This paper describes experiments designed to establish the dynamic properties of belting material. The dynamic elastic modulus, viscous damping and rheologicat constants of the belt were measured. Several properties were studied as a function of the tensile loading on the belt. These included longitudinal vibration, the natural vibration frequency in the transverse direction and the response to an impulse excitation. Vibration response was observed under several different excitation frequencies. Most of these properties have not been tested previously under conditions appropriate for the ISO/DP9856 standard. Two types of belt were tested, a steel reinforced belt and a fabric reinforced belt. The test equipment was built to provide data appropriate for designing belt conveyors. It was observed that the stress wave propagation speed increased with tensile load and that tensile load was the main factor influencing longitudinal vibrations.
基金supported by National Natural Science Foundation of China(No.52077074)。
文摘In order to clarify the charging characteristics of suspension droplets in ion flow field under different temperatures and humidity,the effective charging factor used to characterize the charging characteristics of suspension droplets is introduced in this paper,and a calculation method of charging factor is proposed based on the upstream finite element method(FEM).Then,the charging factor under different temperatures and humidity is calculated,and the analytic expression of the charging factor considering the influence of temperature and humidity is obtained by fitting the calculation results.The influence of suspension droplets on the ion flow field is analyzed.The results show that the charging factor is small and increases little with the relative humidity when the relative humidity is less than 60%,and the charging factor is large and increases rapidly with the relative humidity when the relative humidity is more than 60%.At the same relative humidity,the charging factor increases linearly with the temperature.The influence of charged suspension droplets on the ion flow field can be ignored when the relative humidity is less than 60%and must be considered under high temperature and humidity.The calculation method and analytic expression of the charging factor proposed in this paper can be used to model of ion flow field considering the influence of temperature and humidity and provide technical support for the construction of HVDC transmission lines across high temperature and humidity.
文摘Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal rigidity, the structural form and the corresponding foundation type of middle pylon are different from those of the ordinary steel pylon, and the complicated dynamic characteristics make the calculation quite difficult. In this article, exploration has been made in selection of similarity ratio and model materials, section simulation, restriction conditions simulation, fixing of mass blocks, fabrication scheme and testing method by taking into account different construction and working conditions such as restriction conditions and working environment of a three-pylon suspension bridge, to conduct the test experimental design of the dynamic behavior of the middle pylon, with the purpose to reveal its dynamic characteristics and make comparison and analysis with theoretical assumptions, to provide basis for anti-wind and anti-seismic design and reference for the design and research of three-pylon two-span suspension bridges in the future.
文摘High speed and large capacity belt conveyor is the main development trend. In the design, calculated and used of belt conveyor must be considered the high speed, large capacity, dynamic load. This paper starts from the analysis of conveyor belt transverse vibration. Through calculate transverse vibration natural frequency of conveyor belt, and analyze the lateral stability of belt conveyor.
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProjects(51308071,51378081)supported by the National Natural Science Foundation of China+2 种基金Project(3JJ4057)supported by the Natural Science Foundation of Hunan Province,ChinaProject(12K076)supported by the Open Fund of Innovation Platform in Hunan Provincial Universities,ChinaProject(2015319825120)supported by the Traffic Department of Appliced Basic Research,China
文摘The central buckle, which is often used in a suspension bridge, can improve bridges' performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and bridge-deck driving comfort of a long-span suspension bridge is studied by using a case study of Siduhe Suspension Bridge in China. Based on the finite element software ANSYS and independently complied program, the influence of the central buckle on the structure force-applied characteristics of a long-span suspension bridge has been explored. The results show that the huge increases of natural frequencies can result in the presence of central buckles because of the increases of bending and torsional rigidities. The central buckle basically makes the stiffening girders and cables within the triangular area covered as a relatively approximate rigid area. Hence, the central buckle can reduce the torsional displacement of the main girder. However, the increases of bending and torsional rigidities have little influence on the impact factor, which is obtained by using vehicle-bridge coupled vibration analysis. This means that the central buckle has little effect on the comfort indices. In addition, it is found that the central buckle can enhance the bridge deck's driving stability due to the decrease of the torsional displacements of the main girder.
基金This project is supported by Senior Visiting Scholarship of Chinese Scholarship Council, China(No.20H05002) Provincial Naturial Science Foundation of Education Commission of Jiangsu, China(No.03KJB510072)Doctoral Scholarship of Concordia University, Canada.
文摘An asymmetric damping force generation algorithm is originally proposed to yield the asymmetric force-velocity characteristics for the symmetric magneto-rheological (MR) dampers. The command current is formulated in an asymmetric manner to excite the symmetric MR dampers by employing the “on-off” control law in response to the direction of velocity, and a smooth modulation function is developed without phase shift to suppress strong transients in the damping forces caused by the current-switching discontinuity. The effectiveness of the proposed algorithm is evaluated by analyzing the dynamic responses of a quarter-vehicle suspension system with a symmetric MR-damper by modulating the command current into the asymmetric manner. The simulation results show that the proposed algorithm could achieve a better compromise between the conflicting requirements of the asymmetric damping force ratio and the force-velocity curve smoothness, and the asymmetric damping MR-suspension design can ideally improve the road holding and ride performances of vehicle motion. The proposed algorithm can be generally incorporated with a controller synthesis to realize an intelligent vehicle suspension design with the symmetric MR dampers.
基金National Science and Technology Support Program of China ( No. 2009BAG15B03)National Sci-ence Foundation Support Project( No. 51078080)
文摘The dynamic characteristics of three-tower and two-span suspension bridge are analyzed at different global temperatures. An equivalent cable inner force method is proposed to consider temperature effects and to study the effects of environmental temperature on dynamic characteristics of Taizhou Yangtze River Bridge. The result demonstrates that the effects of temperature can not be neglected in static or dynamic analysis of Taizhou Yangtze River Bridge. The relationship between temperature and frequency is negative. The effects of temperature should be taken into account in experimental modal analysis of long-span bridges and damage identification.
基金Project supported by the National Natural Science Foundation of China (NSFC) (No. 50978056)the NSFC for Young Scholars (No. 50908046)the PhD Programs Foundation of MOE of China (No. 200802861012)
文摘A 3D finite element model for the Taizhou Yangtze River Bridge,the first triple-tower long-span suspension bridge in China,is established based on the nonlinear finite element software ABAQUS,and the dynamic characteristics of the bridge are analyzed using the LANCZOS eigenvalue solution method. The study focuses on the effects of the vertical,lateral and torsional stiffness of the steel box girder,the rigid central buckle and the elastic restraints connecting the towers and the steel box girder on the dynamic characteristics of the triple-tower suspension bridge. Our results show that,in general,the dynamic characteristics of the triple-tower suspension bridge are similar to those of two-tower suspension bridges. The vertical,lateral and torsional stiffness of the steel box girder have different effects on the dynamic characteristics of triple-tower suspension bridges. The elastic re-straints have a more significant effect on the dynamic characteristics than the central buckle,and decreasing the stiffness of the elastic restraints results in the appearance of a longitudinal floating vibration mode of the bridge. Also,rigid central buckles have a greater influence on the dynamic characteristics of triple-tower suspension bridges than on those of two-tower suspension bridges. The results obtained could serve as a valuable numerical reference for analyzing and designing super-long-span triple-tower suspension bridges.
基金supported by the National Natural Science Foundation of China(Grant Nos.61773084,51277018,61175102)
文摘Based on the multiple wedge effects, a petal-shaped capsule robot(PCR) is proposed, and the self-centering phenomenon of the PCR is discovered. For investigating the self-centering characteristics, an innovative concept of the instantaneous fluid membrane(FM) thickness, along with the dynamic FM thickness, is proposed; thus a dynamic FM thickness model and a hydrodynamic pressure(HP) model are derived when the PCR axis deviates from the pipe axis under the effect of gravity. A kinematics equation during suspending process in the vertical direction and a swimming kinematics equation in axial direction are derived respectively. Four capsule robots with different eccentricities of the tiles were manufactured and tested, the theoretical and experimental results show that the HP gradient is a fundamental reason for the self-centering phenomenon. The PCR with the self-centering ability can directly avoid the contact with the bottom of the gastrointestinal(GI) tract, achieving the excellent obstacle surmounting ability in the GI complex environment with the less twisted impact on the GI tract, which has a promising application prospect in the GI diagnosis.
基金the Postdoctoral Science Foundation of China (No. 2004036396)the Foundation of 985- Automotive Engineering of Jilin University
文摘To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random excitations of the test platforms of respectively the left and the right wheels according to actual running conditions of a vehicle, and explored the changing patterns of the kinematic characteristic parameters in the process of suspension motion. The irrationality of the suspension guiding mechanism design was pointed out through simulation and analysis, and the existent problems of the guiding mechanism were optimized and calculated. The results show that all the front-wheel alignment parameters, including the camber, the toe, the caster and the inclination, only slightly change within corresponding allowable ranges in design before and after optimization. The optimization reduces the variation of the wheel-center distance from 47.01 mm to a change of 8.28 mm within the allowable range of ?10 mm to 10 mm, promising an improvement of the vehicle steering stability. The optimization also confines the front-wheel sideways slippage to a much smaller change of 2.23 mm; this helps to greatly reduce the wear of tires and assure the straight running stability of the vehicle.
文摘in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are also formulated when the hoister is used for straining. Based on the belt conveyor of main inclined shaft in Chengzhuang coal mine, the driving torque, driving power and starting-speed characteristic of each electric motor are studied and measured when multi-roller variable-frequency drive (power distribution 2∶1) is used. The optimal control and the optimal starting-acceleration of the multi-roller variable-frequency drive are determined by a large number of industrial experiments and theoretical calculations.
基金Sponsored by the Major Program of the Chinese Academy of Sciences (QYY2008K012)
文摘A new outboard inductive damping valve without any electronic control system is developed. Its working principle,structure and external characteristic are studied. Its mathematical model is presented and its damping characteristic is investigated on the basis of fluid continuity equation,differential equations of motion and Bernoulli equation. The influence of the valve parameters on the damping characteristic is studied numerically. The effects of outboard inductive damping valve and common damping valve on ride and tire load are compared also. The external characteristic of the valve is verified in bench test. The results show that the valve’s mathematical model is quite accurate and the developed valve can be adjust in two stages,which can also meet the requirements of the dynamic characteristic of the vehicle suspension system.
文摘Based on the theory and the practical experiences of linearity design of feasible design area and inverse solution of non linear outer characteristic of suspension shock absorber, in accordance with non linearity outer characteristic formed by open up damping coefficient, full open damping coefficient and smoothness to safety ratio of suspension shock absorber, a method and a research conclusion of the feasible design and inverse solution for the basic problems of designing and inverse solution of non linear outer characteristic of suspension damping components are provided.
文摘无铁芯超导直线同步电机(superconducting linear synchronous motor,SLSM)具有推力密度高、工作气隙大等优势,是超导磁浮列车的动力核心。由于会不可避免地受到弯道、道岔、横风和电源谐波等因素的影响,磁浮列车在运行过程中将发生多自由度运动,使电机次级姿态发生滚转或偏移,致使超导直线电机的电磁力性能发生改变,进而影响列车的运行稳定性。针对多变电机次级姿态下高温超导直线同步电机的三维力特性展开研究,首先分析悬浮车体多自由度运动对直线电机次级姿态的影响,并建立计算SLSM三维电磁力的有限元模型;其次,通过搭建超导同步直线电机样机,实验验证模型的有效性;最后,基于该模型研究无铁芯SLSM次级在发生横向偏移、法向偏移、侧滚、俯仰以及偏航条件下的三维电磁力输出特性及其变化规律,为超导磁浮列车运行性能优化提供了理论依据。