Suspension roasting followed by magnetic separation is a promising method to upgrade oolitic hematite ore.An oolitic hematite ore was roasted using suspension roasting technology at different temperatures.The phase tr...Suspension roasting followed by magnetic separation is a promising method to upgrade oolitic hematite ore.An oolitic hematite ore was roasted using suspension roasting technology at different temperatures.The phase transformation for iron minerals was investigated by XRD and Mossbauer spectrum,and the characteristics of roasted product were analyzed by VSM and SEM-EDS.Results indicate that the magnetic concentrate is of 58.73% Fe with iron recovery of 83.96% at 650 °C.The hematite is rapidly transformed into magnetite during the roasting with transformation ratio of 92.75% at 650 °C.Roasting temperature has a significant influence on the phase transformation of hematite to magnetite.The transformation ratio increases with increased temperature.After roasting,the magnetic susceptibility is significantly improved,while iron ore microstructure is not altered significantly.展开更多
Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigate...Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.展开更多
To investigate the thermal decomposition behavior and reaction kinetics of bastnaesite in suspension roasting,the gas and solid products of bastnaesite roasted in N2 and air atmospheres were examined using a gas analy...To investigate the thermal decomposition behavior and reaction kinetics of bastnaesite in suspension roasting,the gas and solid products of bastnaesite roasted in N2 and air atmospheres were examined using a gas analyzer,X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometry(EDS).Subsequently,the kinetic parameters of bastnaesite in the suspension roasting process were derived and calculated using the isothermal method.The results show that the decomposition product of bastnaesite in N_(2) is CeOF.However,once the roasting temperature exceeds 600℃,CO is generated in addition to CO_(2),and all the XRD diffraction peaks of CeOF are shifted to the right,indicating that CO_(2) can oxidize CeOF and lead to the transformation of Ce(Ⅲ) into Ce(Ⅳ).When roasted in air,the decomposition product CeOF can be completely converted to CeF3 and Ce_(7)O_(12) as it easily oxidizes.Additionally,the reaction rate of bastnaesite in air is higher than that of N_(2),and the starting reaction temperature is lower than that of N_(2).A large number of irregular cracks and holes appear on the surface of solid-phase products following suspension roasting,which are due to the thermal decomposition of bastnaesite that produces CO_(2) as well as the reconstruction of the lattice of the solid-phase products.The reaction kinetic model of bastnaesite roasted in N_(2)(temperature range 600-750℃) and air(temperatu re range 500-575℃) confo rms to the A_(3/2) model with the mechanism function G(α)=-ln(1-α)^(2/3),and the reaction activation energy is 59.78 kj/mol and lnA is 1.65 s^(-1) in N_(2) atmosphere.In air,the reaction activation energy is 100.30 kj/mol and lnA is 9.63 s^(-1).展开更多
The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspensi...The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste.展开更多
In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt...In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt%) was obtained by magnetic separation under the optimum SMR conditions:siderite dosage 40wt%,roasting temperature 700℃,roasting time 10 min.According to the magnetic analysis,SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals,thus enabling the recovery of iron via magnetic separation.Based on the phase transformation analysis,during the SMR process,limonite was first dehydrated and converted to hematite,and then siderite decomposed to generate magnetite and CO,where CO reduced the freshly formed hematite to magnetite.The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure,making them easier to be ground.The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism,suggesting that the diffusion of CO controlled the reaction.These results encourage the application of siderite as a reductant in SMR.展开更多
The iron tailings of Bayan Obo mines are solid waste,which occupies land area and also causes environmental pollution;however,this waste can be recycled.In this study,based on the characteristics of iron minerals and ...The iron tailings of Bayan Obo mines are solid waste,which occupies land area and also causes environmental pollution;however,this waste can be recycled.In this study,based on the characteristics of iron minerals and fluorocarbonate contained in Bayan Obo iron tailings,clean magnetization roasting of iron minerals by bastnaesite from iron tailings during in-situ suspension magnetization roasting in a neutral atmosphere was explored.The results show that for iron tailings with a mass of 12 g,a N_(2) gas flow rate of 600 mL/min,and roasting for 5 min at 800℃,iron concentrate with a 60.44%iron grade at an iron recovery of 76.04%could be obtained.X-ray diffraction analysis showed that the weak magnetic hematite was reduced to strong magnetic magnetite in the neutral atmosphere,without additional reductant.The kinetics of the magnetization roasting of mineral mixtures(bastnaesite and hematite)in a neutral atmosphere showed that the optimal reaction mechanism function was the three-dimensional diffusion model with activation energy of 161.8838 kJ·mol^(-1);this indicates that the reaction was a heterogeneous,diffusion-controlled solid-state reaction.展开更多
As an alternative reductant for fossil fuel in the future,straw-type biomass contributes to emission reduction and green utilization in the suspension roasting process.In this study,the influences of the roasting time...As an alternative reductant for fossil fuel in the future,straw-type biomass contributes to emission reduction and green utilization in the suspension roasting process.In this study,the influences of the roasting time,roasting temperature and dose of straw-type biomass after suspension magnetization roasting(SMR) and separation were investigated.The optimal conditions were determined to be a roasting time of 7.5 min with a straw-type biomass dose of 20 wt% and a roasting temperature of 800℃ in which an iron grade of 71.07% and recovery of 94.17% were obtained for the iron concentrate.The maximum saturation magnetization under optimal conditions was 35.05 A·m^(2)·g^(-1),and the gaseous regulation of the biomass revealed that cumulative reducing gas volume was 293.93 mL at the optimal roasting time of450 s.The transformation of hematite to magnetite was detected by X-ray diffraction(XRD).During microstructure evolution,the outer layer consisting of fissures and tiny holes continuously deepened toward the core.展开更多
A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 m...A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 min,a CO concentration of 20%,and particles with a size less than 37μm accounting for 67.14%of the roasted product.The total iron content and iron recovery of the magnetic concentrate were 56.71%and 90.50%,respectively.The phase transformation,magnetic transition,and microstructure evolution were systematically characterized through iron chemical phase analysis,X-ray diffraction,vibrating sample magnetometry,X-ray photoelectron spectroscopy,and transmission electron microscopy.The results demonstrated the transformation of hematite to magnetite,with the iron content in magnetite increasing from 0.41%in the raw ore to 91.47%in the roasted product.展开更多
Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roa...Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite.展开更多
Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumin...Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumina digestion properties are significantly improved after suspension roasting.Under optimal conditions(t=70 min,T=280°C,w(CaO)=8%and Nk=245 g/L),the digestion ratios are 94.45%and 92.08%for the suspension-roasted and muffle-roasted ore,respectively,and the apparent activation energies are 63.26 and 64.24 kJ/mol,respectively.Two crystal models were established by Materials Studio based on the XRD patterns.The DFT simulation shows that the existing Al—O bands after suspension roasting can improve alumina digestion.The(104)and(113)planes of Al2O3 after suspension roasting are found to combine with NaOH more easily than those of Al2O3 treated in a muffle furnace.展开更多
基金Project([2011]01-69-07)supported by the China Geological Survey Project
文摘Suspension roasting followed by magnetic separation is a promising method to upgrade oolitic hematite ore.An oolitic hematite ore was roasted using suspension roasting technology at different temperatures.The phase transformation for iron minerals was investigated by XRD and Mossbauer spectrum,and the characteristics of roasted product were analyzed by VSM and SEM-EDS.Results indicate that the magnetic concentrate is of 58.73% Fe with iron recovery of 83.96% at 650 °C.The hematite is rapidly transformed into magnetite during the roasting with transformation ratio of 92.75% at 650 °C.Roasting temperature has a significant influence on the phase transformation of hematite to magnetite.The transformation ratio increases with increased temperature.After roasting,the magnetic susceptibility is significantly improved,while iron ore microstructure is not altered significantly.
基金Projects(51874071,52022019,51734005)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.
基金Project supported by the National Key R&D Program of China (2022YFC2905800)National Natural Science Foundation of China(52174242)。
文摘To investigate the thermal decomposition behavior and reaction kinetics of bastnaesite in suspension roasting,the gas and solid products of bastnaesite roasted in N2 and air atmospheres were examined using a gas analyzer,X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometry(EDS).Subsequently,the kinetic parameters of bastnaesite in the suspension roasting process were derived and calculated using the isothermal method.The results show that the decomposition product of bastnaesite in N_(2) is CeOF.However,once the roasting temperature exceeds 600℃,CO is generated in addition to CO_(2),and all the XRD diffraction peaks of CeOF are shifted to the right,indicating that CO_(2) can oxidize CeOF and lead to the transformation of Ce(Ⅲ) into Ce(Ⅳ).When roasted in air,the decomposition product CeOF can be completely converted to CeF3 and Ce_(7)O_(12) as it easily oxidizes.Additionally,the reaction rate of bastnaesite in air is higher than that of N_(2),and the starting reaction temperature is lower than that of N_(2).A large number of irregular cracks and holes appear on the surface of solid-phase products following suspension roasting,which are due to the thermal decomposition of bastnaesite that produces CO_(2) as well as the reconstruction of the lattice of the solid-phase products.The reaction kinetic model of bastnaesite roasted in N_(2)(temperature range 600-750℃) and air(temperatu re range 500-575℃) confo rms to the A_(3/2) model with the mechanism function G(α)=-ln(1-α)^(2/3),and the reaction activation energy is 59.78 kj/mol and lnA is 1.65 s^(-1) in N_(2) atmosphere.In air,the reaction activation energy is 100.30 kj/mol and lnA is 9.63 s^(-1).
基金Project(52022019)supported by the National Natural Science Foundation of China。
文摘The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste.
基金financially supported by the National Natural Science Foundation of China(Nos.51874071 and 52022019)。
文摘In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt%) was obtained by magnetic separation under the optimum SMR conditions:siderite dosage 40wt%,roasting temperature 700℃,roasting time 10 min.According to the magnetic analysis,SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals,thus enabling the recovery of iron via magnetic separation.Based on the phase transformation analysis,during the SMR process,limonite was first dehydrated and converted to hematite,and then siderite decomposed to generate magnetite and CO,where CO reduced the freshly formed hematite to magnetite.The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure,making them easier to be ground.The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism,suggesting that the diffusion of CO controlled the reaction.These results encourage the application of siderite as a reductant in SMR.
基金the financial support from the National Natural Science Foundation of China(No.52174242)the Fundamental Research Funds for the Central Universities(No.180115008)the Fund of the Research Fund Program of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization(No.GK-201804)。
文摘The iron tailings of Bayan Obo mines are solid waste,which occupies land area and also causes environmental pollution;however,this waste can be recycled.In this study,based on the characteristics of iron minerals and fluorocarbonate contained in Bayan Obo iron tailings,clean magnetization roasting of iron minerals by bastnaesite from iron tailings during in-situ suspension magnetization roasting in a neutral atmosphere was explored.The results show that for iron tailings with a mass of 12 g,a N_(2) gas flow rate of 600 mL/min,and roasting for 5 min at 800℃,iron concentrate with a 60.44%iron grade at an iron recovery of 76.04%could be obtained.X-ray diffraction analysis showed that the weak magnetic hematite was reduced to strong magnetic magnetite in the neutral atmosphere,without additional reductant.The kinetics of the magnetization roasting of mineral mixtures(bastnaesite and hematite)in a neutral atmosphere showed that the optimal reaction mechanism function was the three-dimensional diffusion model with activation energy of 161.8838 kJ·mol^(-1);this indicates that the reaction was a heterogeneous,diffusion-controlled solid-state reaction.
基金the financial support provided to this work by the National Natural Science Foundation of China (No. 52022019)。
文摘As an alternative reductant for fossil fuel in the future,straw-type biomass contributes to emission reduction and green utilization in the suspension roasting process.In this study,the influences of the roasting time,roasting temperature and dose of straw-type biomass after suspension magnetization roasting(SMR) and separation were investigated.The optimal conditions were determined to be a roasting time of 7.5 min with a straw-type biomass dose of 20 wt% and a roasting temperature of 800℃ in which an iron grade of 71.07% and recovery of 94.17% were obtained for the iron concentrate.The maximum saturation magnetization under optimal conditions was 35.05 A·m^(2)·g^(-1),and the gaseous regulation of the biomass revealed that cumulative reducing gas volume was 293.93 mL at the optimal roasting time of450 s.The transformation of hematite to magnetite was detected by X-ray diffraction(XRD).During microstructure evolution,the outer layer consisting of fissures and tiny holes continuously deepened toward the core.
基金financially supported by the National Natural Science Foundation of China (Nos.51904058,52174240)the Fundamental Research Funds for the Central Universities,China (No.2101023)。
文摘A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 min,a CO concentration of 20%,and particles with a size less than 37μm accounting for 67.14%of the roasted product.The total iron content and iron recovery of the magnetic concentrate were 56.71%and 90.50%,respectively.The phase transformation,magnetic transition,and microstructure evolution were systematically characterized through iron chemical phase analysis,X-ray diffraction,vibrating sample magnetometry,X-ray photoelectron spectroscopy,and transmission electron microscopy.The results demonstrated the transformation of hematite to magnetite,with the iron content in magnetite increasing from 0.41%in the raw ore to 91.47%in the roasted product.
基金Projects(51874071,51734005,52104257)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite.
基金Projects(U1812402,51774102,51574095,51664005)supported by the National Natural Science Foundation of ChinaProjects([2015]4005,[2017]5788,[2017]5626,KY(2015)334)supported by Talents of Guizhou Science and Technology Cooperation Platform,China。
文摘Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumina digestion properties are significantly improved after suspension roasting.Under optimal conditions(t=70 min,T=280°C,w(CaO)=8%and Nk=245 g/L),the digestion ratios are 94.45%and 92.08%for the suspension-roasted and muffle-roasted ore,respectively,and the apparent activation energies are 63.26 and 64.24 kJ/mol,respectively.Two crystal models were established by Materials Studio based on the XRD patterns.The DFT simulation shows that the existing Al—O bands after suspension roasting can improve alumina digestion.The(104)and(113)planes of Al2O3 after suspension roasting are found to combine with NaOH more easily than those of Al2O3 treated in a muffle furnace.