This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system....Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system.How ever,traditional pneumatic suspension system is hardly to respond the greatly changed load of commercial vehicles To address this issue,a new Gas-Interconnected Quasi-Zero Stiffness Pneumatic Suspension(GIQZSPS)is presented in this paper to improve the vibration isolation performance of commercial vehicle suspension systems under frequent load changes.This new structure adds negative stiffness air chambers on traditional pneumatic suspension to reduce the natural frequency of the suspension.It can adapt to different loads and road conditions by adjusting the solenoid valves between the negative stiffness air chambers.Firstly,a nonlinear mechanical model including the dimensionless stiffness characteristic and interconnected pipeline model is derived for GIQZSPS system.By the nonlinear mechanical model of GIQZSPS system,the force transmissibility rate is chosen as the evaluation index to analyze characteristics.Furthermore,a testing bench simulating 1/4 GIQZSPS system is designed,and the testing analysis of the model validation and isolating performance is carried out.The results show that compared to traditional pneumatic suspension,the GIQZSPS designed in the article has a lower natural frequency.And the system can achieve better vibration isolation performance under different load states by switching the solenoid valves between air chambers.展开更多
Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and...Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles.展开更多
Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could c...Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could considerably enhance the vehicle stability and controllability. In this work, a comprehensive optimization of an off-read vehicle suspension system model was carried out using software ADAMS. The geometric parameters of suspension system were optimized using genetic algorithm (GA) in a way that ride comfort, handling and stability of vehicle were improved. The results of optimized suspension system and variations of geometric parameters due to road roughness and different steering angles were presented in ADAMS and the results of optimized and conventional suspension systems during various driving maneuvers were compared. The simulation results indicate that the camber angle variations decrease by the optimized suspension system, resulting in improved handling and ride comfort characteristics.展开更多
The existing investigations of vehicle ride comfort mainly include motion characteristics analysis based on creating a multi-body dynamic simulation model,and the parameters analysis to improve the suspension control ...The existing investigations of vehicle ride comfort mainly include motion characteristics analysis based on creating a multi-body dynamic simulation model,and the parameters analysis to improve the suspension control for the target.In the study of creating multi-body dynamics simulation models,there is usually without considering calibration and test verification,which make it difficult to ensure the production of engineering.In the study of improving the suspension control parameters for the target,there is a lack of systematic match about comfortable and human characteristics,so it is difficult to implement in the field of driving and leading the vehicle design.In this paper,based on the different characteristic of suspension system that effects on the vehicle ride comfort, according to the suspension system dynamic mechanism,the research methods of vehicle road test,bench test and CAE simulation is used,at the same time,several sensitivity analysis of vehicle ride comfort related to suspension stiffness and damping and speed is made. As a result,the key suspension systematic parameters are given that have important impact on vehicle ride comfort.Through matching parameters,a calibration analysis of suspension system based on human comfort is obtained.The analysis results show that the analysis methods for the design target of making the vehicle with best comfort are effective.On the basis of the theory study,five suspension parameter matching principles are explored to promise the vehicle with perfect ride comfort,which also provide theoretical basis and design methods for the passenger car best match of suspension system stiffness and damping.The research results have the promotional value of practicability and a wide range of engineering application.展开更多
The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical system...The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.展开更多
This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established f...This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.展开更多
The early fatigue damage in the van-body of the semi-trailer is often caused by the unique mechanical characteristics and the dynamic impact of the loads.The traditional finite element method with static strength anal...The early fatigue damage in the van-body of the semi-trailer is often caused by the unique mechanical characteristics and the dynamic impact of the loads.The traditional finite element method with static strength analysis cannot support the fatigue design of van-body;thus,the dynamics analysis should be adopted for the endurance performance.The accurate dynamics model to describe the transient impacts of all kinds of uneven road and the proper system transfer functions to calculate the load transfer effects from tire to van-body are two critical factors for transient dynamics analysis.In order to evaluate the dynamic performance,the dynamics model of the trailer with the air suspension is brought forward.Then the analysis method of the power spectral density (PSD) is set up to study the transient responses of the road dynamic impacts.The transient responses transferred from axles to van-body are calculated,such as dynamic stress,dynamic RMS acceleration,and dynamic load factors.Based on the above dynamic responses,the fatigue life of van-body is predicted with the finite element analysis (FEA) method.Applying the test parameters of the trailer with air suspension,the simulation system with Matlab/Simulink is constructed to describe the dynamic responses of the impacts of the tested PSD of the vehicle axles,and then the fatigue life is predicted with FEA method.The simulated results show that the vibration level of the van-body with air suspension is reduced and the fatigue life is improved.The real vehicle tests on different roads are carried out,and the test results validate the accuracy of the simulation system.The proposed fatigue life prediction method is effective for the virtual design of auto-body.展开更多
This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonl...This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.展开更多
A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a math...A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.展开更多
Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspensi...Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspension systems are briefly reviewed and divided into two categories, i.e., model-based and data-driven approaches. The advantages and disadvantages of these two categories of approaches are briefly summarized. Secondly, a 1D convolution network-based fault diagnostic method for highspeed train suspension systems is designed. To improve the robustness of the method, a Gaussian white noise strategy(GWN-strategy) for immunity to track irregularities and an edge sample training strategy(EST-strategy) for immunity to wheel wear are proposed. The whole network is called GWN-EST-1 DCNN method. Thirdly, to show the performance of this method, a multibody dynamics simulation model of a high-speed train is built to generate the lateral acceleration of a bogie frame corresponding to different track irregularities, wheel profiles, and secondary suspension faults. The simulated signals are then inputted into the diagnostic network, and the results show the correctness and superiority of the GWN-EST-1DCNN method. Finally,the 1DCNN method is further validated using tracking data of a CRH3 train running on a high-speed railway line.展开更多
A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force ...A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force is given. Finally a quarter car model with ER damper is constructed. The skyhook control strategy is adopted to simulate the amplitude-frequency characteristics and the vibration of suspension system under random road excitation on the basis of ER damper characteristics. The response curves of the vertical acceleration, the suspension dynamic working space and the tyre dynamic loading are obtained. Simulation results show that the acceleration is reduced effectively and then the ride comfort is improved by the skyhook control law.展开更多
Under model uncertainty and complex disturbance, the robust control strategy should be used in suspension control systems for various Maglev vehicles to obtain ride comfort of passengers. In this paper, the robust con...Under model uncertainty and complex disturbance, the robust control strategy should be used in suspension control systems for various Maglev vehicles to obtain ride comfort of passengers. In this paper, the robust controllers are synthesized using μ approach for levitation system of electromagnetic Maglev vehicle and active suspension system of super conducting Maglev vehicle. The numerical simulations for different parameter perturbations and different disturbances are accomplished, and a comparison of μ control and H ∞ control is performed. The simulation results show that, both H ∞ control and μ control for two kinds of Maglev vehicles exhibit good stability robustness to plant model uncertainty, but μ control exhibits better performance robustness than H ∞ control, therefore better ride quality could be obtained by μ control.展开更多
The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- ...The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- pension stage was selected and different control techniques were investigated, such as skyhook, dynamic compensation, and sliding mode control. The final aim was to investigate which control schemes are suitable for optimal exploitation of the non-linear behavior of the actuators. The performance improvement achieved by adoption of the semi-active dampers on a standard high-speed train was evaluated in terms of passenger comfort. Different control strategies have been investigated by comparing a simple SISO (single input single output) regulator based on the skyhook damper ap- proach with a centralized regulator. The centralized regulator allows for the estimation of a near optimal set of control forces that minimize car-body accelerations with respect to constraints imposed by limited performance of semi-active actuators. Simulation results show that best results is obtained using a mixed approach that considers the simultaneous applications of model based and feedback compensation control terms.展开更多
To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole con...To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.展开更多
In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to ...In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to research the vibration isolation of the engine mounting system and implement multi-objective optimization for the intrinsic frequency. In this paper, the optimization was implemented in two ways: (1) the intrinsic frequency was optimized by reasonably allocating it: (2) the intrinsic frequency was optimized using energy decoupling. The optimized intrinsic frequencies were simulated using software Adams and then the simulation results were compared. The simulation results showed that the optimized energy distribution was almost up to 90% and the decoupling degree was greatly improved by comparing the initial data, proving the optimized data played a geater effect on engine vibration isolation and further verifying the feasibility of optimization design method.展开更多
The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic c...The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.展开更多
A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is establis...A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.展开更多
An overview of electrorheological (ER) fluid characteristics is given. Based on the Bingham plasticity model and a simple parallel-plate model, the operation principle of ER damper is presented and a four-DOF dynami...An overview of electrorheological (ER) fluid characteristics is given. Based on the Bingham plasticity model and a simple parallel-plate model, the operation principle of ER damper is presented and a four-DOF dynamic model of a vehicle suspension is constructed. Then a semi-active control of vehicle suspension system by ER damper is obtained. According to the semi-active control theory, the acceleration frequency characteristic is achieved with Matlab toolbox. Simulation results show that the vibration of the suspension system is well controlled.展开更多
The dynamic responses of suspension system of a vehicle travelling at varying speeds are generally nonstationary random processes,and the non-stationary random analysis has become an important and complex problem in v...The dynamic responses of suspension system of a vehicle travelling at varying speeds are generally nonstationary random processes,and the non-stationary random analysis has become an important and complex problem in vehicle ride dynamics in the past few years.This paper proposes a new concept,called dynamic frequency domain(DFD),based on the fact that the human body holds different sensitivities to vibrations at different frequencies,and applies this concept to the dynamic assessment on non-stationary vehicles.The study mainly includes two parts,the first is the input numerical calculation of the front and the rear wheels,and the second is the dynamical response analysis of suspension system subjected to non-stationary random excitations.Precise time integration method is used to obtain the vertical acceleration of suspension barycenter and the pitching angular acceleration,both root mean square(RMS)values of which are illustrated in different accelerating cases.The results show that RMS values of non-stationary random excitations are functions of time and increase as the speed increases at the same time.The DFD of vertical acceleration is finally analyzed using time-frequency analysis technique,and the conclusion is obviously that the DFD has a trend to the low frequency region,which would be significant reference for active suspension design under complex driving conditions.展开更多
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.
基金Supported by National Natural Science Foundation of China (Grant No.51875256)Open Platform Fund of Human Institute of Technology (Grant No.KFA22009)。
文摘Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system.How ever,traditional pneumatic suspension system is hardly to respond the greatly changed load of commercial vehicles To address this issue,a new Gas-Interconnected Quasi-Zero Stiffness Pneumatic Suspension(GIQZSPS)is presented in this paper to improve the vibration isolation performance of commercial vehicle suspension systems under frequent load changes.This new structure adds negative stiffness air chambers on traditional pneumatic suspension to reduce the natural frequency of the suspension.It can adapt to different loads and road conditions by adjusting the solenoid valves between the negative stiffness air chambers.Firstly,a nonlinear mechanical model including the dimensionless stiffness characteristic and interconnected pipeline model is derived for GIQZSPS system.By the nonlinear mechanical model of GIQZSPS system,the force transmissibility rate is chosen as the evaluation index to analyze characteristics.Furthermore,a testing bench simulating 1/4 GIQZSPS system is designed,and the testing analysis of the model validation and isolating performance is carried out.The results show that compared to traditional pneumatic suspension,the GIQZSPS designed in the article has a lower natural frequency.And the system can achieve better vibration isolation performance under different load states by switching the solenoid valves between air chambers.
基金supported by the Imperial College Research Fellowship(ICRF 2022-2026)。
文摘Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles.
文摘Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could considerably enhance the vehicle stability and controllability. In this work, a comprehensive optimization of an off-read vehicle suspension system model was carried out using software ADAMS. The geometric parameters of suspension system were optimized using genetic algorithm (GA) in a way that ride comfort, handling and stability of vehicle were improved. The results of optimized suspension system and variations of geometric parameters due to road roughness and different steering angles were presented in ADAMS and the results of optimized and conventional suspension systems during various driving maneuvers were compared. The simulation results indicate that the camber angle variations decrease by the optimized suspension system, resulting in improved handling and ride comfort characteristics.
基金supported by National Hi-tech Research and Development Program of China(863 Program,Grant No. 2008AA11A123)Jilin Provincial Technology Department Development Plan of China(Grant No.20086006)
文摘The existing investigations of vehicle ride comfort mainly include motion characteristics analysis based on creating a multi-body dynamic simulation model,and the parameters analysis to improve the suspension control for the target.In the study of creating multi-body dynamics simulation models,there is usually without considering calibration and test verification,which make it difficult to ensure the production of engineering.In the study of improving the suspension control parameters for the target,there is a lack of systematic match about comfortable and human characteristics,so it is difficult to implement in the field of driving and leading the vehicle design.In this paper,based on the different characteristic of suspension system that effects on the vehicle ride comfort, according to the suspension system dynamic mechanism,the research methods of vehicle road test,bench test and CAE simulation is used,at the same time,several sensitivity analysis of vehicle ride comfort related to suspension stiffness and damping and speed is made. As a result,the key suspension systematic parameters are given that have important impact on vehicle ride comfort.Through matching parameters,a calibration analysis of suspension system based on human comfort is obtained.The analysis results show that the analysis methods for the design target of making the vehicle with best comfort are effective.On the basis of the theory study,five suspension parameter matching principles are explored to promise the vehicle with perfect ride comfort,which also provide theoretical basis and design methods for the passenger car best match of suspension system stiffness and damping.The research results have the promotional value of practicability and a wide range of engineering application.
基金Supported by National Natural Science Foundation of China(Grant Nos.50875112,51275002)PhD Programs Foundation of Ministry of Education of China(Grant No.20093227110013)+1 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK2010337)Natural Science Foundation of Higher Education of Jiangsu Province of China(Grant No.09KJA580001)
文摘The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.
基金partially supported by the National Natural Science Foundation of China(61622302,61673072,61573070)Guangdong Natural Science Funds for Distinguished Young Scholar(2017A030306014)+1 种基金the Department of Education of Guangdong Province(2016KTSCX030)the Department of Education of Liaoning Province(LZ2017001)
文摘This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.
基金supported by National Natural Science Foundation of China (Grant No. 50905092)
文摘The early fatigue damage in the van-body of the semi-trailer is often caused by the unique mechanical characteristics and the dynamic impact of the loads.The traditional finite element method with static strength analysis cannot support the fatigue design of van-body;thus,the dynamics analysis should be adopted for the endurance performance.The accurate dynamics model to describe the transient impacts of all kinds of uneven road and the proper system transfer functions to calculate the load transfer effects from tire to van-body are two critical factors for transient dynamics analysis.In order to evaluate the dynamic performance,the dynamics model of the trailer with the air suspension is brought forward.Then the analysis method of the power spectral density (PSD) is set up to study the transient responses of the road dynamic impacts.The transient responses transferred from axles to van-body are calculated,such as dynamic stress,dynamic RMS acceleration,and dynamic load factors.Based on the above dynamic responses,the fatigue life of van-body is predicted with the finite element analysis (FEA) method.Applying the test parameters of the trailer with air suspension,the simulation system with Matlab/Simulink is constructed to describe the dynamic responses of the impacts of the tested PSD of the vehicle axles,and then the fatigue life is predicted with FEA method.The simulated results show that the vibration level of the van-body with air suspension is reduced and the fatigue life is improved.The real vehicle tests on different roads are carried out,and the test results validate the accuracy of the simulation system.The proposed fatigue life prediction method is effective for the virtual design of auto-body.
文摘This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.
文摘A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.
基金supported by the National Nature Science Foundation of China(No.71871188)the Fundamental Research Funds for the Central Universities(No.2682021CX051)supported by China Scholarship Council(No.201707000113)。
文摘Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspension systems are briefly reviewed and divided into two categories, i.e., model-based and data-driven approaches. The advantages and disadvantages of these two categories of approaches are briefly summarized. Secondly, a 1D convolution network-based fault diagnostic method for highspeed train suspension systems is designed. To improve the robustness of the method, a Gaussian white noise strategy(GWN-strategy) for immunity to track irregularities and an edge sample training strategy(EST-strategy) for immunity to wheel wear are proposed. The whole network is called GWN-EST-1 DCNN method. Thirdly, to show the performance of this method, a multibody dynamics simulation model of a high-speed train is built to generate the lateral acceleration of a bogie frame corresponding to different track irregularities, wheel profiles, and secondary suspension faults. The simulated signals are then inputted into the diagnostic network, and the results show the correctness and superiority of the GWN-EST-1DCNN method. Finally,the 1DCNN method is further validated using tracking data of a CRH3 train running on a high-speed railway line.
文摘A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force is given. Finally a quarter car model with ER damper is constructed. The skyhook control strategy is adopted to simulate the amplitude-frequency characteristics and the vibration of suspension system under random road excitation on the basis of ER damper characteristics. The response curves of the vertical acceleration, the suspension dynamic working space and the tyre dynamic loading are obtained. Simulation results show that the acceleration is reduced effectively and then the ride comfort is improved by the skyhook control law.
文摘Under model uncertainty and complex disturbance, the robust control strategy should be used in suspension control systems for various Maglev vehicles to obtain ride comfort of passengers. In this paper, the robust controllers are synthesized using μ approach for levitation system of electromagnetic Maglev vehicle and active suspension system of super conducting Maglev vehicle. The numerical simulations for different parameter perturbations and different disturbances are accomplished, and a comparison of μ control and H ∞ control is performed. The simulation results show that, both H ∞ control and μ control for two kinds of Maglev vehicles exhibit good stability robustness to plant model uncertainty, but μ control exhibits better performance robustness than H ∞ control, therefore better ride quality could be obtained by μ control.
文摘The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- pension stage was selected and different control techniques were investigated, such as skyhook, dynamic compensation, and sliding mode control. The final aim was to investigate which control schemes are suitable for optimal exploitation of the non-linear behavior of the actuators. The performance improvement achieved by adoption of the semi-active dampers on a standard high-speed train was evaluated in terms of passenger comfort. Different control strategies have been investigated by comparing a simple SISO (single input single output) regulator based on the skyhook damper ap- proach with a centralized regulator. The centralized regulator allows for the estimation of a near optimal set of control forces that minimize car-body accelerations with respect to constraints imposed by limited performance of semi-active actuators. Simulation results show that best results is obtained using a mixed approach that considers the simultaneous applications of model based and feedback compensation control terms.
文摘To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.
文摘In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to research the vibration isolation of the engine mounting system and implement multi-objective optimization for the intrinsic frequency. In this paper, the optimization was implemented in two ways: (1) the intrinsic frequency was optimized by reasonably allocating it: (2) the intrinsic frequency was optimized using energy decoupling. The optimized intrinsic frequencies were simulated using software Adams and then the simulation results were compared. The simulation results showed that the optimized energy distribution was almost up to 90% and the decoupling degree was greatly improved by comparing the initial data, proving the optimized data played a geater effect on engine vibration isolation and further verifying the feasibility of optimization design method.
文摘The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.
文摘A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.
基金Sponsored bythe National Fund for Studing Abroad (LQ2000-1)
文摘An overview of electrorheological (ER) fluid characteristics is given. Based on the Bingham plasticity model and a simple parallel-plate model, the operation principle of ER damper is presented and a four-DOF dynamic model of a vehicle suspension is constructed. Then a semi-active control of vehicle suspension system by ER damper is obtained. According to the semi-active control theory, the acceleration frequency characteristic is achieved with Matlab toolbox. Simulation results show that the vibration of the suspension system is well controlled.
基金This work was supported by the National Natural Science Foundation of China(No.51705205)。
文摘The dynamic responses of suspension system of a vehicle travelling at varying speeds are generally nonstationary random processes,and the non-stationary random analysis has become an important and complex problem in vehicle ride dynamics in the past few years.This paper proposes a new concept,called dynamic frequency domain(DFD),based on the fact that the human body holds different sensitivities to vibrations at different frequencies,and applies this concept to the dynamic assessment on non-stationary vehicles.The study mainly includes two parts,the first is the input numerical calculation of the front and the rear wheels,and the second is the dynamical response analysis of suspension system subjected to non-stationary random excitations.Precise time integration method is used to obtain the vertical acceleration of suspension barycenter and the pitching angular acceleration,both root mean square(RMS)values of which are illustrated in different accelerating cases.The results show that RMS values of non-stationary random excitations are functions of time and increase as the speed increases at the same time.The DFD of vertical acceleration is finally analyzed using time-frequency analysis technique,and the conclusion is obviously that the DFD has a trend to the low frequency region,which would be significant reference for active suspension design under complex driving conditions.