Docetaxel-loaded sustained-release preparation based on 2-Hydroxyethyl methacrylate(HEMA)and Methyl methacrylate(MMA)cross-linked copolymer(P(HEMA-co-MMA))was prepared to examine the potential use for preventing poste...Docetaxel-loaded sustained-release preparation based on 2-Hydroxyethyl methacrylate(HEMA)and Methyl methacrylate(MMA)cross-linked copolymer(P(HEMA-co-MMA))was prepared to examine the potential use for preventing posterior capsule opacification(PCO).The preparations were prepared by polymerizing the mixture of HEMA,MMA,cross-linking agent(EGDMA),initiator(AIBN)and docetaxel.The influence factors and mechanism of drug release were studied in the experiments.FT-IR,X-RD and SEM methods were used to characterize the polymer(P(HEMA-co-MMA))and docetaxel-loaded sustained-release preparations.Biocompatibility of P(HEMA-co-MMA)and in-vitro effect of docetaxel-loaded sustained-release preparations were also evaluated.The results showed that docetaxel could release sustainedly from these preparations prepared by cross-linking polymerization.And the release rate could be accelerated by increasing the MMA ratio or EGDMA ratio of the polymer.Release mechanism of docetaxel fitted the Higuchi model well.The results of IR and X-RD showed that only a hydrogen bond was formed between docetaxel and P(HEMA-co-MMA).Docetaxel dispersed in P(HEMA-co-MMA)in amorphous form.The elution test showed that P(HEMA-co-MMA)had good biocompatibility and the in-vitro pharmacodynamics study proved that docetaxel could release stably from the preparations and inhibit HLECs’proliferation.The docetaxel-loaded sustained-release preparations proved to be a promising therapy for preventing PCO.These results also lay a theoretical and experimental foundation for the future.展开更多
Environmental cleaning is an important aspect of bacteria control.Ethyl cellulose microcapsules containing potassium monopersulfate(PMCM)were prepared by emulsified solvent diffusion method.The chemical structure and ...Environmental cleaning is an important aspect of bacteria control.Ethyl cellulose microcapsules containing potassium monopersulfate(PMCM)were prepared by emulsified solvent diffusion method.The chemical structure and microstructure of the obtained PMCM was characterized by methods of Fourier transform infrared spectroscopy(FT-IR),optical microscopy,scanning electron microscopy and X-ACT energy dispersive X-ray spectroscopy.The SEM micrographs of the PMCM containing 21.6%of C,46.8%of O,10.7%of S and 19.4%of K was relatively smooth.Thermal stability,sustained release performance,and antimicrobial activity of PMCM were investigated.The results showed that the drug loading and encapsulation efficiency of PMCM were 30.3%and 42.6%respectively.Potassium monopersulfate was fully released after 8 h,following a Fickian diffusion mechanism.Results showed that the microcapsules prepared with a high concentration of potassium monopersulfate solution showed a good antimicrobial effect.The microcapsule wall of the resulting PMCM increased with increasing ethyl cellulose content and had high thermal stability from the data of 69%residue rate.The excellent thermal stability and high sustained release performance of PMCM showed high application value.展开更多
[Objective]The paper was to screen a new ideal sustained-release,long-lasting and low-toxic pesticide and convenient and efficient pesticide application technology for controlling Ceratovacuna lanigera and Baliathrips...[Objective]The paper was to screen a new ideal sustained-release,long-lasting and low-toxic pesticide and convenient and efficient pesticide application technology for controlling Ceratovacuna lanigera and Baliathrips serratus. [Method]2% Imidacloprid GR were selected and applied in the soil for field efficacy trial. [Result] The optimum dosage of 2% imidacloprid GR was 30 kg/hm^2( active ingredient 600 g),which can be mixed with fertilizer( 30 kg pesticide and 40-80 kg fertilizer per hm^2) once combined with sugarcane planting management or big ridging during February and June. The control effects against C. lanigera and B. serratus could be more than 98. 2% and 81. 1%,respectively. The actual yield and sugar content in various pesticide treatments were increased by 33 390 kg/hm^2 and 6. 6% respectively compared to blank control. [Conclusion]2% imidacloprid GR has good control effects on C. lanigera and B. serratus. It is a new pesticide with ideal sustained-release,long-lasting and low-toxin effects against C. lanigera and B. serratus. Therefore,it could be used alternatively with other pesticides,to delay production and development of drug resistance.展开更多
In this work a three-dimensional, time-quantified Monte Carlo model that efficiently describes diffusion through and from nanotubes is implemented. Controlled delivery from Halloysite Nano-tubes (HNT) is modeled based...In this work a three-dimensional, time-quantified Monte Carlo model that efficiently describes diffusion through and from nanotubes is implemented. Controlled delivery from Halloysite Nano-tubes (HNT) is modeled based on interactions between the HNT’s inner wall and the nanoparticles (NPs) and among NPs themselves. The model was validated using published experimental data. The validated model is then used to study the effect of multiples parameter like HNT diameter and length, particle charge, and ambient temperature on the release of encapsulated NPs. The results show that release profiles depend on the size distribution of the HNT batch used for the experiment, as delivery is sensitive to HNT lumen and length. A very good agreement with the experiment is observed when a weighted average release profile is compared to the experimental profile. Although the NP dynamics is temperature-dependent, the effect is minimum within the range of temperatures relevant to biomedical applications, but will be relevant for other applications at temperatures significantly different from room temperature. This model can be used to predict the best conditions for a particular delivery need.展开更多
To assess the merits of PEGylated poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles as drug carriers for tumor necrosis factor-α receptor blocking peptide (TNFR-BP), PEG-PLGA copolymer, which could be use...To assess the merits of PEGylated poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles as drug carriers for tumor necrosis factor-α receptor blocking peptide (TNFR-BP), PEG-PLGA copolymer, which could be used to prepare the stealth nanoparticles, was synthesized with methoxypolyethyleneglycol, DL-lactide and glycolide. The structure of PEG-PLGA was confirmed with ^1H-NMR and FT-IR spectroscopy, and the molecular weight (MW) was determined by gel permeation chromatography. Fluorescent FITC-TNFR- BP was chosen as model protein and encapsulated within PEG-PLGA nanoparticles using the double emulsion method. Atomic force microscopy and photon correlation spectroscopy were employed to characterize the stealth nanoparticles fabricated for morphology, size with polydispersity index and zeta potential. Encapsulation efficiency (EE) and the release of FITC-TNFR-BP in nanopartieles in vitro were measured by the fluorescence measurement. The stealth nanoparticles were found to have the mean diameter less than 270 nm and zeta potential less than -20 mV. In all nanoparticle formulations, more than 45% of EE were obtained. FITC-TNFR-BP release from the PEG-PLGA nanoparticles exhibited a biphasic pattern, initial burst release and consequently sustained release. The experimental results show that PEG-PLGA nanoparticles possess the potential to develop as drug carriers for controlled release applications of TNFR-BP.展开更多
Water-soluble three-dimensional porous supramolecular organic frameworks(SOFs) have been demonstrated as a new generation of homogeneous polycationic platforms for anti-cancer drug delivery.The new SOF drug delivery...Water-soluble three-dimensional porous supramolecular organic frameworks(SOFs) have been demonstrated as a new generation of homogeneous polycationic platforms for anti-cancer drug delivery.The new SOF drug delivery systems(sof-DDSs) can adsorb dianionic pemetrexed(PMX),a clinically used chemotherapeutic agent instantaneously upon dissolving in water,which is driven by both electrostatic attraction and hydrophobicity.The in situ-prepared PMX@SOFs are highly stable and can avoid important release of the drug during plasm circulation and overcome the multidrug resistance of human breast MCF-7/Adr cancer cells to enter the cancer cells.Acidic microenvironment of cancer cells promotes the release of the drug in cancer cells.Both in vitro and in vivo studies have revealed that sofDDSs considerably improve the treatment efficacy of PMX,leading to 6-12-fold reduction of the IC50 values,as compared with that of PMX alone.The new drug delivery strategy omits the loading process required by most of reported nanoparticle-based delivery systems and thus holds promise for future development of low-cost drug delivery systems展开更多
基金(Lab of Drug Metabolism and Pharmacokinetics,Sun Yat-sen University,Guangzhou,China)for the help and technical assistance.
文摘Docetaxel-loaded sustained-release preparation based on 2-Hydroxyethyl methacrylate(HEMA)and Methyl methacrylate(MMA)cross-linked copolymer(P(HEMA-co-MMA))was prepared to examine the potential use for preventing posterior capsule opacification(PCO).The preparations were prepared by polymerizing the mixture of HEMA,MMA,cross-linking agent(EGDMA),initiator(AIBN)and docetaxel.The influence factors and mechanism of drug release were studied in the experiments.FT-IR,X-RD and SEM methods were used to characterize the polymer(P(HEMA-co-MMA))and docetaxel-loaded sustained-release preparations.Biocompatibility of P(HEMA-co-MMA)and in-vitro effect of docetaxel-loaded sustained-release preparations were also evaluated.The results showed that docetaxel could release sustainedly from these preparations prepared by cross-linking polymerization.And the release rate could be accelerated by increasing the MMA ratio or EGDMA ratio of the polymer.Release mechanism of docetaxel fitted the Higuchi model well.The results of IR and X-RD showed that only a hydrogen bond was formed between docetaxel and P(HEMA-co-MMA).Docetaxel dispersed in P(HEMA-co-MMA)in amorphous form.The elution test showed that P(HEMA-co-MMA)had good biocompatibility and the in-vitro pharmacodynamics study proved that docetaxel could release stably from the preparations and inhibit HLECs’proliferation.The docetaxel-loaded sustained-release preparations proved to be a promising therapy for preventing PCO.These results also lay a theoretical and experimental foundation for the future.
基金support From the Open Fund Project of Key Lab.of Biomass Energy and Material,Jiangsu Province(JSBEM201907)the Ordinary University Young Innovative Talents Project of Guangdong Province(2018KQNCX119).
文摘Environmental cleaning is an important aspect of bacteria control.Ethyl cellulose microcapsules containing potassium monopersulfate(PMCM)were prepared by emulsified solvent diffusion method.The chemical structure and microstructure of the obtained PMCM was characterized by methods of Fourier transform infrared spectroscopy(FT-IR),optical microscopy,scanning electron microscopy and X-ACT energy dispersive X-ray spectroscopy.The SEM micrographs of the PMCM containing 21.6%of C,46.8%of O,10.7%of S and 19.4%of K was relatively smooth.Thermal stability,sustained release performance,and antimicrobial activity of PMCM were investigated.The results showed that the drug loading and encapsulation efficiency of PMCM were 30.3%and 42.6%respectively.Potassium monopersulfate was fully released after 8 h,following a Fickian diffusion mechanism.Results showed that the microcapsules prepared with a high concentration of potassium monopersulfate solution showed a good antimicrobial effect.The microcapsule wall of the resulting PMCM increased with increasing ethyl cellulose content and had high thermal stability from the data of 69%residue rate.The excellent thermal stability and high sustained release performance of PMCM showed high application value.
基金Supported by Special Fund for China Agricultural Industry Research System(CARS-20-2-2)Special Fund for Agricultural Industry Research System of Yunnan Province(YNGZTX-4-92)
文摘[Objective]The paper was to screen a new ideal sustained-release,long-lasting and low-toxic pesticide and convenient and efficient pesticide application technology for controlling Ceratovacuna lanigera and Baliathrips serratus. [Method]2% Imidacloprid GR were selected and applied in the soil for field efficacy trial. [Result] The optimum dosage of 2% imidacloprid GR was 30 kg/hm^2( active ingredient 600 g),which can be mixed with fertilizer( 30 kg pesticide and 40-80 kg fertilizer per hm^2) once combined with sugarcane planting management or big ridging during February and June. The control effects against C. lanigera and B. serratus could be more than 98. 2% and 81. 1%,respectively. The actual yield and sugar content in various pesticide treatments were increased by 33 390 kg/hm^2 and 6. 6% respectively compared to blank control. [Conclusion]2% imidacloprid GR has good control effects on C. lanigera and B. serratus. It is a new pesticide with ideal sustained-release,long-lasting and low-toxin effects against C. lanigera and B. serratus. Therefore,it could be used alternatively with other pesticides,to delay production and development of drug resistance.
文摘In this work a three-dimensional, time-quantified Monte Carlo model that efficiently describes diffusion through and from nanotubes is implemented. Controlled delivery from Halloysite Nano-tubes (HNT) is modeled based on interactions between the HNT’s inner wall and the nanoparticles (NPs) and among NPs themselves. The model was validated using published experimental data. The validated model is then used to study the effect of multiples parameter like HNT diameter and length, particle charge, and ambient temperature on the release of encapsulated NPs. The results show that release profiles depend on the size distribution of the HNT batch used for the experiment, as delivery is sensitive to HNT lumen and length. A very good agreement with the experiment is observed when a weighted average release profile is compared to the experimental profile. Although the NP dynamics is temperature-dependent, the effect is minimum within the range of temperatures relevant to biomedical applications, but will be relevant for other applications at temperatures significantly different from room temperature. This model can be used to predict the best conditions for a particular delivery need.
基金Funded by the National 863 Project of China (No. 2004AA215162)
文摘To assess the merits of PEGylated poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles as drug carriers for tumor necrosis factor-α receptor blocking peptide (TNFR-BP), PEG-PLGA copolymer, which could be used to prepare the stealth nanoparticles, was synthesized with methoxypolyethyleneglycol, DL-lactide and glycolide. The structure of PEG-PLGA was confirmed with ^1H-NMR and FT-IR spectroscopy, and the molecular weight (MW) was determined by gel permeation chromatography. Fluorescent FITC-TNFR- BP was chosen as model protein and encapsulated within PEG-PLGA nanoparticles using the double emulsion method. Atomic force microscopy and photon correlation spectroscopy were employed to characterize the stealth nanoparticles fabricated for morphology, size with polydispersity index and zeta potential. Encapsulation efficiency (EE) and the release of FITC-TNFR-BP in nanopartieles in vitro were measured by the fluorescence measurement. The stealth nanoparticles were found to have the mean diameter less than 270 nm and zeta potential less than -20 mV. In all nanoparticle formulations, more than 45% of EE were obtained. FITC-TNFR-BP release from the PEG-PLGA nanoparticles exhibited a biphasic pattern, initial burst release and consequently sustained release. The experimental results show that PEG-PLGA nanoparticles possess the potential to develop as drug carriers for controlled release applications of TNFR-BP.
基金the National Natural Science Foundation of China(Nos.21432004,21529201,and 91527301)the Ministry of Science and Technology of China(No.2013CB834501)+1 种基金the Ministry of Education of China Research Fund for the Doctoral Program and of China for financial supportsupport from the Molecular Foundry,Lawrence Berkeley National Laboratory,supported by the Office of Science,Office of Basic Energy Sciences,Scientific User Facilities Division,of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231
文摘Water-soluble three-dimensional porous supramolecular organic frameworks(SOFs) have been demonstrated as a new generation of homogeneous polycationic platforms for anti-cancer drug delivery.The new SOF drug delivery systems(sof-DDSs) can adsorb dianionic pemetrexed(PMX),a clinically used chemotherapeutic agent instantaneously upon dissolving in water,which is driven by both electrostatic attraction and hydrophobicity.The in situ-prepared PMX@SOFs are highly stable and can avoid important release of the drug during plasm circulation and overcome the multidrug resistance of human breast MCF-7/Adr cancer cells to enter the cancer cells.Acidic microenvironment of cancer cells promotes the release of the drug in cancer cells.Both in vitro and in vivo studies have revealed that sofDDSs considerably improve the treatment efficacy of PMX,leading to 6-12-fold reduction of the IC50 values,as compared with that of PMX alone.The new drug delivery strategy omits the loading process required by most of reported nanoparticle-based delivery systems and thus holds promise for future development of low-cost drug delivery systems