Traumatic brain injury(TBI)is a public health problem with an undue economic burden that impacts nearly every age,ethnic,and gender group across the globe(Capizzi et al.,2020).TBIs are often sustained during a dynamic...Traumatic brain injury(TBI)is a public health problem with an undue economic burden that impacts nearly every age,ethnic,and gender group across the globe(Capizzi et al.,2020).TBIs are often sustained during a dynamic range of exposures to energetic environmental forces and as such outcomes are typically heterogeneous regarding severity and pathology(Capizzi et al.,2020).展开更多
A clean environment with low carbon emissions is the goal of research on the development of green and sustainable buildings that use bio-sourced materials in conjunction with solar energy to create more sustainable ci...A clean environment with low carbon emissions is the goal of research on the development of green and sustainable buildings that use bio-sourced materials in conjunction with solar energy to create more sustainable cities.This is particularly true in Africa,where there aren’t many studies on the topic.The current study suggests a 90 m^(2) model of a sustainable building in a dry climate that is movable to address the issue of housing in remote areas,ensures comfort in harsh weather conditions,uses solar renewable resources—which are plentiful in Africa—uses biosourced materials,and examines how these materials relate to temperature and humidity control while emitting minimal carbon emissions.In order to solve the topic under consideration,the work is split into two sections:numerical and experimental approaches.Using TRNSYS and Revit,the suggested prototype building is examined numerically to examine the impact of orientation,envelope composition made of bio-sourced materials,and carbon emissions.Through a hygrothermal investigation,experiments are conducted to evaluate this prototype’s effectiveness.Furthermore,an examination of the photovoltaic system’s production,consumption,and several scenarios used tomaximize battery life is included in the paper.Because the biosourcedmaterial achieves a thermal transmittance of 0.15(W.m^(-2).K^(-1)),the results demonstrate an intriguing finding in terms of comfort.This value satisfies the requirements of passive building,energy autonomy of the dwelling,and injection in-network with an annual value of 15,757 kWh.Additionally,compared to the literature,the heating needs ratio is 6.38(kWh/m^(2).an)and the cooling needs ratio is 49(kWh/m^(2).an),both of which are good values.According to international norms,the inside temperature doesn’t go above 26℃,and the humidity level is within a comfortable range.展开更多
At the 19th G20 Summit in Brazil in November 2024,China promoted the development of sustainable solutions to climate change,biodiversity loss,and environmental pollution.This continued the theme of the 2016 G20 Hangzh...At the 19th G20 Summit in Brazil in November 2024,China promoted the development of sustainable solutions to climate change,biodiversity loss,and environmental pollution.This continued the theme of the 2016 G20 Hangzhou Summit,at which China placed development at the center of the G20’s macroeconomic policy coordination for the first time,adopting the G20 Action Plan on the United Nations 2030 Agenda for Sustainable Development and the G20 Initiative on Supporting Industrialization in Africa and Least Developed Countries.In Brazil,China announced actions on advancing modernization in Africa over the next three years with a Chinese commitment of RMB360 billion yuan in financial support.In this article,we examine the potential role of geoscience research and practice in development,particularly in the sustainable use of natural resources,the prevention of climate change impacts,as well as mitigation of geo-hazards and their health implications,indicating the areas where China’s geoscience for Africa is strong and where it requires more effort.We find that although China is the world’s leading publisher of scientific papers,its contribution to geoscience in Africa(the globe’s fastest-growing economic area),as shown by bibliometric research,appears to be rather small and inconsistent with the research priorities of Africa.Amongst the priorities for geoscience research in Africa,which are not addressed substantially by the research conducted so far,are sustainable mineral and hydrocarbon development,hydrology and hydrogeology,climate change and resilience,natural hazards,medical geology,agrominerals,and geoscience education and training.A particular opportunity for African nations is the presence of critical minerals-minerals needed for the energy transition and for batteries for electric cars in particular.Africa is well-endowed with many of these critical materials,such as rare earth elements and platinum group metals.Several research groups stress the need for the agency on the part of African institutions to map out these valuable resources,understand their value and the economics and sustainability of their extraction,encourage local business,attract investment,and scrutinize proposals from potential international investors to get the best deals.A strong point of existing China-led geoscience development includes the Deep-time Digital Earth(DDE)program online computing platform and its artificial intelligence tool GeoGPT,which is being developed in partnership with Zhejiang Laboratory.These are being developed with strong China funding support for free and wide global access,with a particular focus on Africa.These advanced tools will help to place the agency of development squarely in the hands of African scientists and institutions.In summary,the following are recommended:(1)a more coordinated and strategic approach to China-led geoscience research in Africa;(2)an Africa-centered,geoscience funding initiative that concentrates on relevant topics to the continent such as critical minerals exploration and other geological resources,materials and processes and their health implications on the populations and ecosystems in general,as well as climate change and climate change resilience;and(3)continued support for China-led international initiatives that seek to increase the agency and capacity of Africa geoscience researchers,for example the Deep-time Digital Earth platform.展开更多
The development of sustainable sludge management systems requires looking at them with a new vision in which the concepts of SD(Sustainable Development)must integrate those of CE(Circular Economy),both concepts subjec...The development of sustainable sludge management systems requires looking at them with a new vision in which the concepts of SD(Sustainable Development)must integrate those of CE(Circular Economy),both concepts subject to the principles of TD(Thermodynamics),thus allowing the adoption of actions that are all the more effective the more complete the evaluation of the social dimension has been.This involves a new“Way of thinking”which sees the sludge system as the“Locomotive”of the entire wastewater/sludge treatment train and is developed through“Ways of acting”which includes both“Technical”actions to maximize recoveries of useful materials and/or or energy,and“Socio/Institutional”actions to overcome barriers linked to local cultures and traditions,also considering that the specific local context heavily influences the choices capable of satisfying the concepts of CE.It follows the need of issuing realistic and applicable regulations and overcoming social barriers,such as lack of infrastructure and/or qualified personnel,to achieve an effective integration of the concepts of CE with the more general ones of sustainability.展开更多
Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems...Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems.For example,overexploitation of natural resources,mining,pollution,and deforestation are all elements that negatively affect biodiversity and natural resources.Few studies have been conducted to evaluate the damage caused,despite the significant uncontrolled pressure from human activity.However,maintaining its environment is essential to the survival of coastal fishing.Goal:This study’s goal was to evaluate how human activity affected Tabounsou’s coastal ecology in order to suggest remedial actions for sustainable management.The following was the methodological approach used:executive consultation and archival analysis;stakeholder survey(locals,farmers,salt producers,fishers,and loggers);inventory of species;anthropogenic activity inventory;evaluation of how human activity affects aquatic life in the research region;suggestion and action for sustainable management;Outcome:Executive consultation indicated that the main issues are:construction projects that reduce the estuary’s surface area;agricultural practices such as woodcutting and salt farming;the rise in resource exploitation;noncompliance with fisheries laws;and the catching of young fish.Eighty-three percent of fisherman ditch their nets on the coast after using them,but only seventeen percent burn them.With a 75%frequency rate,the same survey indicates that most fisherman fish around the coast.In the Tabounsou area,according to loggers’survey,68%of the wood cut is Rhizophora,24%is Avicennia,and 8%is Laguncularia.Three fish stocks,representing nine families and nine species,were identified by the species inventory.At 18%and 15%,respectively,the actors most frequently capture the species Pseudotolithus elongatus and Arius parkii.According to a poll of 30 farmers,90%of them apply fertilizer to their soil,while only 10%do not.During the dry season,salt is grown.According to two actors,Bougna Toro Toro produces 100 kg of salt per day,followed by Khoumawadé,which produces 80 kg,and Toumbibougni,which produces 70 kg.展开更多
Rapid urbanization has been happening around the world,leading to many challenges and difficulties in infrastructure,communication network,transportation,environmental and organizational problems.Proper and responsibl...Rapid urbanization has been happening around the world,leading to many challenges and difficulties in infrastructure,communication network,transportation,environmental and organizational problems.Proper and responsible management of urban resources plays a significant role in sustainable development.Smart sustainable cities use ICTs(Information and Communication Technologies)to improve quality of life,efficiency of urban operation and services.The latest advancement in communication,technology,data management,and IoT(Internet of Things)provide a tremendous role for practical implementations and adoption of devices and entities.Smart sustainable cities can be intellectualized as an innovative approach of controlling urban resources and valuable components based on the latest advancement in ICT.Our study focuses on reviewing and discussing the literature that states the vital components of IoT associated with smart sustainable cities in general and specifically with green energy.展开更多
Research-based on lignin as a bioproduct has grown due to its high availability,reactivity,physicochemical sta-bility,and abundance of different aromatic units.Lignin consists of various functional groups,which can re...Research-based on lignin as a bioproduct has grown due to its high availability,reactivity,physicochemical sta-bility,and abundance of different aromatic units.Lignin consists of various functional groups,which can react in various chemical reactions and serve as a raw material in various processes to obtain multiple products.These characteristics make lignin suitable for synthesizing products from natural raw materials,replacing fossil ones.Due to a high aromatic variety and complex structural arrangement,lignin isolation and fractionation are still challenging.The aim and novelty of this work was the modification of severity and enzymatic hydrolysis proce-dure on an industrial pre-treatment to improve by-products of birch processing as a raw material for the potential production of different products.Lignin from birch wood enzymatic hydrolysis was obtained and marked accord-ingly:HS(high severity),MS(medium severity),and LS(low severity)lignin.Samples were characterized by ash content,analytical pyrolysis,solubility,and viscosity.HS lignin was characterized by a relatively high carbohy-drate content(16%)and lower lignin content(77%).Meanwhile,LS lignin showed increased lignin content(83%)and reduced carbohydrate content(9%).It can be concluded that the delignification process greatly influ-ences the properties of the obtained lignin.HS lignin resulted in a lower polydispersity index(PDI)and more condensed structure,while LS lignin showed a higher PDI but a lower content of carbohydrates.Therefore,look-ing for a golden middle way is necessary whilefinding the conditions according to the usefield.展开更多
This review aims to analyze the development and impact of Artificial Intelligence(AI)in the context of Saudi Arabia’s public healthcare system to fulfill Vision 2030 objectives.It is extensively devoted to AI technol...This review aims to analyze the development and impact of Artificial Intelligence(AI)in the context of Saudi Arabia’s public healthcare system to fulfill Vision 2030 objectives.It is extensively devoted to AI technology deployment relevant to disease management,healthcare delivery,epidemiology,and policy-making.However,its AI is culturally sensitive and ethically grounded in Islam.Based on the PRISMA framework,an SLR evaluated primary academic literature,cases,and practices of Saudi Arabia’s AI implementation in the public healthcare sector.Instead,it categorizes prior research based on how AI can work,the issues it poses,and its implications for the Kingdom’s healthcare system.The Saudi Arabian context analyses show that AI has increased the discreet prediction of diseases,resource management,and monitoring outbreaks during mass congregations such as hajj.Therefore,the study outlines critical areas for defining the potential for artificial intelligence and areas for enhancing digital development to support global healthcare progress.The key themes emerging from the review include Saudi Arabia:(i)the effectiveness of AI with human interaction for sustainable health services;(ii)conditions and quality control to enhance the quality of health care services using AI;(iii)environmental factors as influencing factors for public health care;(iv)Artificial Intelligence,and advanced decision-making technology for Middle Eastern health care systems.For policymakers,healthcare managers,and researchers who will engage with AI innovation,the review proclaims that AI applications should respect the country’s socio-cultural and ethical practices and pave the way for sustainable healthcare provision.More empirical research is needed on the implementation issues with AI,creating culturally appropriate models of AI,and finding new applications of AI to address the increasing demand for healthcare services in Saudi Arabia.展开更多
The Ministry of Culture and Tourism(MCT)held a press conference on December 5,2024 in Beijing,inviting several guests to give a comprehensive introduction to ISO 14785:2024,Tourism and related services—Tourist inform...The Ministry of Culture and Tourism(MCT)held a press conference on December 5,2024 in Beijing,inviting several guests to give a comprehensive introduction to ISO 14785:2024,Tourism and related services—Tourist information services—Requirements and recommendations.The international standard was published by ISO recently,whose development was participated in by Chinese experts with great efforts.展开更多
Riding along Xiamen’s Xinglin Bay Marine Bicycle Lane feels like gliding between the sea and sky.This 2.6-km-long pathway,built above the sea,links two sides of the bay.
Pepper (Capsicum annuum L.) is an important agricultural crop because of the nutritional value of the fruit and its economic importance.Various techniques have been practiced to enhance pepper's productivity and n...Pepper (Capsicum annuum L.) is an important agricultural crop because of the nutritional value of the fruit and its economic importance.Various techniques have been practiced to enhance pepper's productivity and nutritional value.Therefore,this study was conducted to determine the impact of different training methods and biostimulant applications on sweet pepper plants'growth,yield,and chemical composition under greenhouse conditions.For the training method,unpruned plants were compared with one stem and two stem plants.Unpruned plants had the fruit number of 33.98,fruit weight of 2.18 kg·plant^(-1),and total marketable yield of 1 090.0 kg·hm^(-2).One stem plant gave the best average fruit weight of 86.63 g,vitamin C content of 13.66 mg·kg^(-1)FW,and TSS content of 7.21%.However,two stem plants had the highest fruit setting of 62.41%,carotenoid content of 0.14 mg·kg^(-1)FW,and fruit chlorophyll content of 3.57 mg·kg^(-1)FW.For biostimulant applications,control plants were compared with the Disper Root (DR) and Disper Vital (DV).DR application significantly increased total sugar,carotenoid,fruit chlorophyll,and TSS contents compared to the control and DV applications.While,applying DV increased fruit setting,plant fruit number,weight,and total marketable yield.In addition,integrating one stem plant with the DR application improved fiber,vitamin C,and TSS contents significantly.Two stem plants,and the DV application improved fruit setting and carotenoid content.Thus,one and two stem training methods integrated with the DR and DV biostimulant applications could be considered for developing agricultural practices to obtain commercial yield and improve the nutrition values of sweet peppers,as unpruned plants without biostimulant applications have a negative impact.展开更多
https://www.sciencedirect.com/journal/energy-and-buildings/vol/327/suppl/C Volume 327,15 January 2025[OA](1)Energy storage potential of cementitious materials:Advances,challenges and future directions by Salim Barbhui...https://www.sciencedirect.com/journal/energy-and-buildings/vol/327/suppl/C Volume 327,15 January 2025[OA](1)Energy storage potential of cementitious materials:Advances,challenges and future directions by Salim Barbhuiya,Bibhuti Bhusan Das,Dibyendu Adak,Article 115063 Abstract:This review paper investigates the use of cementitious materials for energy storage,emphasizing their role in advancing sustainable development.It starts with a comprehensive overview of energy storage technologies and explores the key properties of cementitious materials that make them suitable for energy storage,alongside the challenges and opportunities they present.The review covers different energy storage mechanisms,including chemical,thermal,and electrical methods,highlighting the efficiency and capacity of each approach.Performance evaluation is addressed through specific criteria,experimental techniques,and case studies,with numerical outcomes provided to illustrate the effectiveness of these materials in energy storage.The paper also discusses potential applications in energy infrastructure and construction,identifying emerging technological advancements and trends.Environmental and economic considerations,such as sustainability benefits and cost analysis,are evaluated in detail.Finally,the review summarizes key insights,outlines the implications for sustainable energy systems,and offers specific recommendations for future research and development to optimize the use of cementitious materials in energy storage.展开更多
Global climate change has created substantial difficulties in the areas of sustainability,development,and environmental conservation due to the widespread dependence on fossil fuels for energy production.Nevertheless,...Global climate change has created substantial difficulties in the areas of sustainability,development,and environmental conservation due to the widespread dependence on fossil fuels for energy production.Nevertheless,the promotion of renewable energy programs has the potential to significantly expedite endeavors aimed at tackling climate change.Thus,it is essential to conduct a thorough analysis that considers the financial aspects to fully understand the main hurdles that are preventing the advancement of renewable energy initiatives.Italy is a leading country in the worldwide deployment of renewable energy.The objective of this research is to assess the impact of financial growth,economic progress,and energy expenses on Italy’s adoption of renewable energy sources.By employing the Auto-Regressive Distributed Lag(ARDL)technique,we analyzed annual data spanning from1990 to 2022.Findings revealed that a 1%increase in financial and economic development would boost renewable energy consumption in the long run by 0.29%and 0.48%,respectively.Instead,a 1%increase in energy prices might reduce consumption of renewable energy by 0.05%in the long run.This study’s primary significance lies in furnishing actionable strategies for Italy to augment green finance for renewable energy,fostering sustained social and economic progress.Moreover,the analytical insights gleaned from this research offer valuable insights for energy-importing nations worldwide.展开更多
Unmanned aerial vehicles(UAVs)technology is rapidly advancing,offering innovative solutions for various industries,including the critical task of oil and gas pipeline surveillance.However,the limited flight time of co...Unmanned aerial vehicles(UAVs)technology is rapidly advancing,offering innovative solutions for various industries,including the critical task of oil and gas pipeline surveillance.However,the limited flight time of conventional UAVs presents a significant challenge to comprehensive and continuous monitoring,which is crucial for maintaining the integrity of pipeline infrastructure.This review paper evaluates methods for extending UAV flight endurance,focusing on their potential application in pipeline inspection.Through an extensive literature review,this study identifies the latest advancements in UAV technology,evaluates their effectiveness,and highlights the existing gaps in achieving prolonged flight operations.Advanced techniques,including artificial intelligence(AI),machine learning(ML),and deep learning(DL),are reviewed for their roles in pipeline monitoring.Notably,DL algorithms like You Only Look Once(YOLO)are explored for autonomous flight in UAV-based inspections,real-time defect detection,such as cracks,corrosion,and leaks,enhancing reliability and accuracy.A vital aspect of this research is the proposed deployment of a hybrid drone design combining lighter-than-air(LTA)and heavier-than-air(HTA)principles,achieving a balance of endurance and maneuverability.LTA vehicles utilize buoyancy to reduce energy consumption,thereby extending flight durations.The paper details the methodology for designing LTA vehicles,presenting an analysis of design parameters that align with the requirements for effective pipeline surveillance.The ongoing work is currently at Technology Readiness Level(TRL)4,where key components have been validated in laboratory conditions,with fabrication and flight testing planned for the next phase.Initial design analysis indicates that LTA configurations could offer significant advantages in flight endurance compared to traditional UAV designs.These findings lay the groundwork for future fabrication and testing phases,which will be critical in validating and assessing the proposed approach’s real-world applicability.By outlining the technical complexities and proposing specialized techniques tailored for pipeline monitoring,this paper provides a foundational framework for advancing UAV capabilities in the oil and gas sector.Researchers and industry practitioners can use this roadmap to further develop UAV-enabled surveillance solutions,aiming to improve the reliability,efficiency,and safety of pipeline monitoring.展开更多
Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in t...Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.展开更多
At the 15th Airshow China,held in Zhuhai,Guangdong Province,from 12 to 17 November 2024,China Southern Airlines,in collaboration with the Global Sustainable Transport Innovation and Knowledge Centre and Airbus,present...At the 15th Airshow China,held in Zhuhai,Guangdong Province,from 12 to 17 November 2024,China Southern Airlines,in collaboration with the Global Sustainable Transport Innovation and Knowledge Centre and Airbus,presented a report on the development of sustainable aviation fuel(SAF).展开更多
Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due t...Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due to its unique geological background,the karst landscape is strongly developed,with high bedrock exposure,high permeability,fragmented soils,shallow soils,and high spatial heterogeneity,resulting in very limited water storage for plant uptake and growth in rock fissures and shallow soils.Therefore,water conditions are an important ecological factor influencing plant growth.To comprehensively understand the current progress and development trends in plant water use research focusing on karst areas,this paper uses the VOSviewer software to analyze the literature on plant water use in karst areas between 1984 and 2022.The results showed that:(1)Research on plant water use in karst areas has developed rapidly worldwide,and the number of relevant studies in the literature have increased year by year,which together means that it is attracting more and more attention.(2)The investigation of plant water sources,geological background of karst areas,seasonal arid tropical climates,the relationship betweenδ13C values and plant water use efficiency,karst plant water use in karst savannas and subtropical areas,and ecosystems under climate change yields the knowledge base in this field.(3)Most studies in this area focus on the division of water sources of plants in karst areas,the methods of studying the water use sources of plants,and the water use strategies and efficiency of plants.(4)Future research will focus on how plant water use in karst areas is influenced by Earth’s critical zones,climate change,and ecohydrological separation.These studies will provide a key scientific basis for guiding ecological restoration and promoting sustainable development in karst areas.展开更多
Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electroly...Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electrolytes in lithium-ion,lithium-metal(e.g.,lithium-sulphur,lithium-oxygen)and post-lithium-ion(e.g.,sodium-ion,magnesium-ion,and aluminum-ion)batteries.High electrochemical stability of ILs/DESs is one of the prerequisites for green,sustainable and safe energy;while easy electrochemical decomposition of ILs/DESs would be contradictory to the concept of green chemistry by adding the cost,releasing volatile/hazardous by-products and hindering the recyclability.However,(1)are ILs/DESs-based electrolytes really electrochemically stable when they are not used in batteries?(2)are ILs/DESs-based electrolytes really electrochemically stable in real batteries?(3)how to design ILs/DESs-based electrolytes with high electrochemical stability for batteries to achieve sustainability and green development?Up to now,there is no summary on this topic,to the best of our knowledge.Here,we review the effect of chemical structure and non-structural factors on the electrochemical stability of ILs/DESs in simulated conditions.More importantly,electrochemical stability of ILs/DESs in real lithium-ion,lithium-metal and post-lithium-ion batteries is concluded and compared.Finally,the strategies to improve the electrochemical stability of ILs/DESs in lithium-ion,lithium-metal and post-lithium-ion batteries are proposed.This review would provide a guide to design ILs/DESs with high electrochemical stability for lithium-ion,lithium-metal and postlithium-ion batteries to achieve sustainable and green energy.展开更多
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this c...Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.展开更多
Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector design...Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector designed to efficiently remove carbonates and enhance phosphate enrichment in froth flotation processes.This study focuses on the synthesis of an anionic collector using the saponification reaction of a frying oil sample,subsequently applied to the flotation of calcite and dolomite.To elucidate the adsorption mechanisms of the frying oil collector(FrOC)and sodium oleate,a reference collector,on fluorapatite,calcite,dolomite,and quartz surfaces,comprehensive experiments were conducted,including zeta potential measurements and Fourier transform infrared spectroscopy.Results revealed diverse adsorption affinities of the molecules towards these minerals.To assess the practical performance of the collector,flotation tests were conducted using a natural phosphate ore mixture,employing a BoxBehnken experimental design.Notably,under optimized conditions(pH 9,1000 g/t of FrOC,3.5 min of conditioning,and 6 min of flotation),FrOC exhibited excellent performance,with calcite and dolomite recoveries exceeding 80%,while apatite recovery in the concentrate fraction remained below 10%.This work exemplifies both circular economy practices and the distinctive approach to sustainable mineral processing.展开更多
文摘Traumatic brain injury(TBI)is a public health problem with an undue economic burden that impacts nearly every age,ethnic,and gender group across the globe(Capizzi et al.,2020).TBIs are often sustained during a dynamic range of exposures to energetic environmental forces and as such outcomes are typically heterogeneous regarding severity and pathology(Capizzi et al.,2020).
文摘A clean environment with low carbon emissions is the goal of research on the development of green and sustainable buildings that use bio-sourced materials in conjunction with solar energy to create more sustainable cities.This is particularly true in Africa,where there aren’t many studies on the topic.The current study suggests a 90 m^(2) model of a sustainable building in a dry climate that is movable to address the issue of housing in remote areas,ensures comfort in harsh weather conditions,uses solar renewable resources—which are plentiful in Africa—uses biosourced materials,and examines how these materials relate to temperature and humidity control while emitting minimal carbon emissions.In order to solve the topic under consideration,the work is split into two sections:numerical and experimental approaches.Using TRNSYS and Revit,the suggested prototype building is examined numerically to examine the impact of orientation,envelope composition made of bio-sourced materials,and carbon emissions.Through a hygrothermal investigation,experiments are conducted to evaluate this prototype’s effectiveness.Furthermore,an examination of the photovoltaic system’s production,consumption,and several scenarios used tomaximize battery life is included in the paper.Because the biosourcedmaterial achieves a thermal transmittance of 0.15(W.m^(-2).K^(-1)),the results demonstrate an intriguing finding in terms of comfort.This value satisfies the requirements of passive building,energy autonomy of the dwelling,and injection in-network with an annual value of 15,757 kWh.Additionally,compared to the literature,the heating needs ratio is 6.38(kWh/m^(2).an)and the cooling needs ratio is 49(kWh/m^(2).an),both of which are good values.According to international norms,the inside temperature doesn’t go above 26℃,and the humidity level is within a comfortable range.
文摘At the 19th G20 Summit in Brazil in November 2024,China promoted the development of sustainable solutions to climate change,biodiversity loss,and environmental pollution.This continued the theme of the 2016 G20 Hangzhou Summit,at which China placed development at the center of the G20’s macroeconomic policy coordination for the first time,adopting the G20 Action Plan on the United Nations 2030 Agenda for Sustainable Development and the G20 Initiative on Supporting Industrialization in Africa and Least Developed Countries.In Brazil,China announced actions on advancing modernization in Africa over the next three years with a Chinese commitment of RMB360 billion yuan in financial support.In this article,we examine the potential role of geoscience research and practice in development,particularly in the sustainable use of natural resources,the prevention of climate change impacts,as well as mitigation of geo-hazards and their health implications,indicating the areas where China’s geoscience for Africa is strong and where it requires more effort.We find that although China is the world’s leading publisher of scientific papers,its contribution to geoscience in Africa(the globe’s fastest-growing economic area),as shown by bibliometric research,appears to be rather small and inconsistent with the research priorities of Africa.Amongst the priorities for geoscience research in Africa,which are not addressed substantially by the research conducted so far,are sustainable mineral and hydrocarbon development,hydrology and hydrogeology,climate change and resilience,natural hazards,medical geology,agrominerals,and geoscience education and training.A particular opportunity for African nations is the presence of critical minerals-minerals needed for the energy transition and for batteries for electric cars in particular.Africa is well-endowed with many of these critical materials,such as rare earth elements and platinum group metals.Several research groups stress the need for the agency on the part of African institutions to map out these valuable resources,understand their value and the economics and sustainability of their extraction,encourage local business,attract investment,and scrutinize proposals from potential international investors to get the best deals.A strong point of existing China-led geoscience development includes the Deep-time Digital Earth(DDE)program online computing platform and its artificial intelligence tool GeoGPT,which is being developed in partnership with Zhejiang Laboratory.These are being developed with strong China funding support for free and wide global access,with a particular focus on Africa.These advanced tools will help to place the agency of development squarely in the hands of African scientists and institutions.In summary,the following are recommended:(1)a more coordinated and strategic approach to China-led geoscience research in Africa;(2)an Africa-centered,geoscience funding initiative that concentrates on relevant topics to the continent such as critical minerals exploration and other geological resources,materials and processes and their health implications on the populations and ecosystems in general,as well as climate change and climate change resilience;and(3)continued support for China-led international initiatives that seek to increase the agency and capacity of Africa geoscience researchers,for example the Deep-time Digital Earth platform.
文摘The development of sustainable sludge management systems requires looking at them with a new vision in which the concepts of SD(Sustainable Development)must integrate those of CE(Circular Economy),both concepts subject to the principles of TD(Thermodynamics),thus allowing the adoption of actions that are all the more effective the more complete the evaluation of the social dimension has been.This involves a new“Way of thinking”which sees the sludge system as the“Locomotive”of the entire wastewater/sludge treatment train and is developed through“Ways of acting”which includes both“Technical”actions to maximize recoveries of useful materials and/or or energy,and“Socio/Institutional”actions to overcome barriers linked to local cultures and traditions,also considering that the specific local context heavily influences the choices capable of satisfying the concepts of CE.It follows the need of issuing realistic and applicable regulations and overcoming social barriers,such as lack of infrastructure and/or qualified personnel,to achieve an effective integration of the concepts of CE with the more general ones of sustainability.
文摘Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems.For example,overexploitation of natural resources,mining,pollution,and deforestation are all elements that negatively affect biodiversity and natural resources.Few studies have been conducted to evaluate the damage caused,despite the significant uncontrolled pressure from human activity.However,maintaining its environment is essential to the survival of coastal fishing.Goal:This study’s goal was to evaluate how human activity affected Tabounsou’s coastal ecology in order to suggest remedial actions for sustainable management.The following was the methodological approach used:executive consultation and archival analysis;stakeholder survey(locals,farmers,salt producers,fishers,and loggers);inventory of species;anthropogenic activity inventory;evaluation of how human activity affects aquatic life in the research region;suggestion and action for sustainable management;Outcome:Executive consultation indicated that the main issues are:construction projects that reduce the estuary’s surface area;agricultural practices such as woodcutting and salt farming;the rise in resource exploitation;noncompliance with fisheries laws;and the catching of young fish.Eighty-three percent of fisherman ditch their nets on the coast after using them,but only seventeen percent burn them.With a 75%frequency rate,the same survey indicates that most fisherman fish around the coast.In the Tabounsou area,according to loggers’survey,68%of the wood cut is Rhizophora,24%is Avicennia,and 8%is Laguncularia.Three fish stocks,representing nine families and nine species,were identified by the species inventory.At 18%and 15%,respectively,the actors most frequently capture the species Pseudotolithus elongatus and Arius parkii.According to a poll of 30 farmers,90%of them apply fertilizer to their soil,while only 10%do not.During the dry season,salt is grown.According to two actors,Bougna Toro Toro produces 100 kg of salt per day,followed by Khoumawadé,which produces 80 kg,and Toumbibougni,which produces 70 kg.
文摘Rapid urbanization has been happening around the world,leading to many challenges and difficulties in infrastructure,communication network,transportation,environmental and organizational problems.Proper and responsible management of urban resources plays a significant role in sustainable development.Smart sustainable cities use ICTs(Information and Communication Technologies)to improve quality of life,efficiency of urban operation and services.The latest advancement in communication,technology,data management,and IoT(Internet of Things)provide a tremendous role for practical implementations and adoption of devices and entities.Smart sustainable cities can be intellectualized as an innovative approach of controlling urban resources and valuable components based on the latest advancement in ICT.Our study focuses on reviewing and discussing the literature that states the vital components of IoT associated with smart sustainable cities in general and specifically with green energy.
文摘Research-based on lignin as a bioproduct has grown due to its high availability,reactivity,physicochemical sta-bility,and abundance of different aromatic units.Lignin consists of various functional groups,which can react in various chemical reactions and serve as a raw material in various processes to obtain multiple products.These characteristics make lignin suitable for synthesizing products from natural raw materials,replacing fossil ones.Due to a high aromatic variety and complex structural arrangement,lignin isolation and fractionation are still challenging.The aim and novelty of this work was the modification of severity and enzymatic hydrolysis proce-dure on an industrial pre-treatment to improve by-products of birch processing as a raw material for the potential production of different products.Lignin from birch wood enzymatic hydrolysis was obtained and marked accord-ingly:HS(high severity),MS(medium severity),and LS(low severity)lignin.Samples were characterized by ash content,analytical pyrolysis,solubility,and viscosity.HS lignin was characterized by a relatively high carbohy-drate content(16%)and lower lignin content(77%).Meanwhile,LS lignin showed increased lignin content(83%)and reduced carbohydrate content(9%).It can be concluded that the delignification process greatly influ-ences the properties of the obtained lignin.HS lignin resulted in a lower polydispersity index(PDI)and more condensed structure,while LS lignin showed a higher PDI but a lower content of carbohydrates.Therefore,look-ing for a golden middle way is necessary whilefinding the conditions according to the usefield.
基金funded by the Scientific ResearchDeanship at theUniversity ofHa’il-Saudi Arabia through project number-RG-23251.
文摘This review aims to analyze the development and impact of Artificial Intelligence(AI)in the context of Saudi Arabia’s public healthcare system to fulfill Vision 2030 objectives.It is extensively devoted to AI technology deployment relevant to disease management,healthcare delivery,epidemiology,and policy-making.However,its AI is culturally sensitive and ethically grounded in Islam.Based on the PRISMA framework,an SLR evaluated primary academic literature,cases,and practices of Saudi Arabia’s AI implementation in the public healthcare sector.Instead,it categorizes prior research based on how AI can work,the issues it poses,and its implications for the Kingdom’s healthcare system.The Saudi Arabian context analyses show that AI has increased the discreet prediction of diseases,resource management,and monitoring outbreaks during mass congregations such as hajj.Therefore,the study outlines critical areas for defining the potential for artificial intelligence and areas for enhancing digital development to support global healthcare progress.The key themes emerging from the review include Saudi Arabia:(i)the effectiveness of AI with human interaction for sustainable health services;(ii)conditions and quality control to enhance the quality of health care services using AI;(iii)environmental factors as influencing factors for public health care;(iv)Artificial Intelligence,and advanced decision-making technology for Middle Eastern health care systems.For policymakers,healthcare managers,and researchers who will engage with AI innovation,the review proclaims that AI applications should respect the country’s socio-cultural and ethical practices and pave the way for sustainable healthcare provision.More empirical research is needed on the implementation issues with AI,creating culturally appropriate models of AI,and finding new applications of AI to address the increasing demand for healthcare services in Saudi Arabia.
文摘The Ministry of Culture and Tourism(MCT)held a press conference on December 5,2024 in Beijing,inviting several guests to give a comprehensive introduction to ISO 14785:2024,Tourism and related services—Tourist information services—Requirements and recommendations.The international standard was published by ISO recently,whose development was participated in by Chinese experts with great efforts.
文摘Riding along Xiamen’s Xinglin Bay Marine Bicycle Lane feels like gliding between the sea and sky.This 2.6-km-long pathway,built above the sea,links two sides of the bay.
文摘Pepper (Capsicum annuum L.) is an important agricultural crop because of the nutritional value of the fruit and its economic importance.Various techniques have been practiced to enhance pepper's productivity and nutritional value.Therefore,this study was conducted to determine the impact of different training methods and biostimulant applications on sweet pepper plants'growth,yield,and chemical composition under greenhouse conditions.For the training method,unpruned plants were compared with one stem and two stem plants.Unpruned plants had the fruit number of 33.98,fruit weight of 2.18 kg·plant^(-1),and total marketable yield of 1 090.0 kg·hm^(-2).One stem plant gave the best average fruit weight of 86.63 g,vitamin C content of 13.66 mg·kg^(-1)FW,and TSS content of 7.21%.However,two stem plants had the highest fruit setting of 62.41%,carotenoid content of 0.14 mg·kg^(-1)FW,and fruit chlorophyll content of 3.57 mg·kg^(-1)FW.For biostimulant applications,control plants were compared with the Disper Root (DR) and Disper Vital (DV).DR application significantly increased total sugar,carotenoid,fruit chlorophyll,and TSS contents compared to the control and DV applications.While,applying DV increased fruit setting,plant fruit number,weight,and total marketable yield.In addition,integrating one stem plant with the DR application improved fiber,vitamin C,and TSS contents significantly.Two stem plants,and the DV application improved fruit setting and carotenoid content.Thus,one and two stem training methods integrated with the DR and DV biostimulant applications could be considered for developing agricultural practices to obtain commercial yield and improve the nutrition values of sweet peppers,as unpruned plants without biostimulant applications have a negative impact.
文摘https://www.sciencedirect.com/journal/energy-and-buildings/vol/327/suppl/C Volume 327,15 January 2025[OA](1)Energy storage potential of cementitious materials:Advances,challenges and future directions by Salim Barbhuiya,Bibhuti Bhusan Das,Dibyendu Adak,Article 115063 Abstract:This review paper investigates the use of cementitious materials for energy storage,emphasizing their role in advancing sustainable development.It starts with a comprehensive overview of energy storage technologies and explores the key properties of cementitious materials that make them suitable for energy storage,alongside the challenges and opportunities they present.The review covers different energy storage mechanisms,including chemical,thermal,and electrical methods,highlighting the efficiency and capacity of each approach.Performance evaluation is addressed through specific criteria,experimental techniques,and case studies,with numerical outcomes provided to illustrate the effectiveness of these materials in energy storage.The paper also discusses potential applications in energy infrastructure and construction,identifying emerging technological advancements and trends.Environmental and economic considerations,such as sustainability benefits and cost analysis,are evaluated in detail.Finally,the review summarizes key insights,outlines the implications for sustainable energy systems,and offers specific recommendations for future research and development to optimize the use of cementitious materials in energy storage.
文摘Global climate change has created substantial difficulties in the areas of sustainability,development,and environmental conservation due to the widespread dependence on fossil fuels for energy production.Nevertheless,the promotion of renewable energy programs has the potential to significantly expedite endeavors aimed at tackling climate change.Thus,it is essential to conduct a thorough analysis that considers the financial aspects to fully understand the main hurdles that are preventing the advancement of renewable energy initiatives.Italy is a leading country in the worldwide deployment of renewable energy.The objective of this research is to assess the impact of financial growth,economic progress,and energy expenses on Italy’s adoption of renewable energy sources.By employing the Auto-Regressive Distributed Lag(ARDL)technique,we analyzed annual data spanning from1990 to 2022.Findings revealed that a 1%increase in financial and economic development would boost renewable energy consumption in the long run by 0.29%and 0.48%,respectively.Instead,a 1%increase in energy prices might reduce consumption of renewable energy by 0.05%in the long run.This study’s primary significance lies in furnishing actionable strategies for Italy to augment green finance for renewable energy,fostering sustained social and economic progress.Moreover,the analytical insights gleaned from this research offer valuable insights for energy-importing nations worldwide.
基金supported by the Yayasan Universiti Teknologi PETRONAS(YUTP)under Cost Center 015LC0-485.
文摘Unmanned aerial vehicles(UAVs)technology is rapidly advancing,offering innovative solutions for various industries,including the critical task of oil and gas pipeline surveillance.However,the limited flight time of conventional UAVs presents a significant challenge to comprehensive and continuous monitoring,which is crucial for maintaining the integrity of pipeline infrastructure.This review paper evaluates methods for extending UAV flight endurance,focusing on their potential application in pipeline inspection.Through an extensive literature review,this study identifies the latest advancements in UAV technology,evaluates their effectiveness,and highlights the existing gaps in achieving prolonged flight operations.Advanced techniques,including artificial intelligence(AI),machine learning(ML),and deep learning(DL),are reviewed for their roles in pipeline monitoring.Notably,DL algorithms like You Only Look Once(YOLO)are explored for autonomous flight in UAV-based inspections,real-time defect detection,such as cracks,corrosion,and leaks,enhancing reliability and accuracy.A vital aspect of this research is the proposed deployment of a hybrid drone design combining lighter-than-air(LTA)and heavier-than-air(HTA)principles,achieving a balance of endurance and maneuverability.LTA vehicles utilize buoyancy to reduce energy consumption,thereby extending flight durations.The paper details the methodology for designing LTA vehicles,presenting an analysis of design parameters that align with the requirements for effective pipeline surveillance.The ongoing work is currently at Technology Readiness Level(TRL)4,where key components have been validated in laboratory conditions,with fabrication and flight testing planned for the next phase.Initial design analysis indicates that LTA configurations could offer significant advantages in flight endurance compared to traditional UAV designs.These findings lay the groundwork for future fabrication and testing phases,which will be critical in validating and assessing the proposed approach’s real-world applicability.By outlining the technical complexities and proposing specialized techniques tailored for pipeline monitoring,this paper provides a foundational framework for advancing UAV capabilities in the oil and gas sector.Researchers and industry practitioners can use this roadmap to further develop UAV-enabled surveillance solutions,aiming to improve the reliability,efficiency,and safety of pipeline monitoring.
基金supported by the National Natural Science Foundation of China(42177341)the Natural Science Basic Research Program of Shanxi,China(202203021222138).
文摘Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.
文摘At the 15th Airshow China,held in Zhuhai,Guangdong Province,from 12 to 17 November 2024,China Southern Airlines,in collaboration with the Global Sustainable Transport Innovation and Knowledge Centre and Airbus,presented a report on the development of sustainable aviation fuel(SAF).
基金This work was supported by the National Key Research and Development Program of China(2021YFE0107100)Guangxi Key Research and Development Program(GuikeAB22035004)Guangxi Science and Technology Base and Talent Special Project(Guike AD20297090).
文摘Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due to its unique geological background,the karst landscape is strongly developed,with high bedrock exposure,high permeability,fragmented soils,shallow soils,and high spatial heterogeneity,resulting in very limited water storage for plant uptake and growth in rock fissures and shallow soils.Therefore,water conditions are an important ecological factor influencing plant growth.To comprehensively understand the current progress and development trends in plant water use research focusing on karst areas,this paper uses the VOSviewer software to analyze the literature on plant water use in karst areas between 1984 and 2022.The results showed that:(1)Research on plant water use in karst areas has developed rapidly worldwide,and the number of relevant studies in the literature have increased year by year,which together means that it is attracting more and more attention.(2)The investigation of plant water sources,geological background of karst areas,seasonal arid tropical climates,the relationship betweenδ13C values and plant water use efficiency,karst plant water use in karst savannas and subtropical areas,and ecosystems under climate change yields the knowledge base in this field.(3)Most studies in this area focus on the division of water sources of plants in karst areas,the methods of studying the water use sources of plants,and the water use strategies and efficiency of plants.(4)Future research will focus on how plant water use in karst areas is influenced by Earth’s critical zones,climate change,and ecohydrological separation.These studies will provide a key scientific basis for guiding ecological restoration and promoting sustainable development in karst areas.
基金supported by National Natural Science Foundation of China(22103030,22073112)Youth Topnotch Talent Program of Hebei Institution of Higher Learning(BJ2021057)for financial support.
文摘Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electrolytes in lithium-ion,lithium-metal(e.g.,lithium-sulphur,lithium-oxygen)and post-lithium-ion(e.g.,sodium-ion,magnesium-ion,and aluminum-ion)batteries.High electrochemical stability of ILs/DESs is one of the prerequisites for green,sustainable and safe energy;while easy electrochemical decomposition of ILs/DESs would be contradictory to the concept of green chemistry by adding the cost,releasing volatile/hazardous by-products and hindering the recyclability.However,(1)are ILs/DESs-based electrolytes really electrochemically stable when they are not used in batteries?(2)are ILs/DESs-based electrolytes really electrochemically stable in real batteries?(3)how to design ILs/DESs-based electrolytes with high electrochemical stability for batteries to achieve sustainability and green development?Up to now,there is no summary on this topic,to the best of our knowledge.Here,we review the effect of chemical structure and non-structural factors on the electrochemical stability of ILs/DESs in simulated conditions.More importantly,electrochemical stability of ILs/DESs in real lithium-ion,lithium-metal and post-lithium-ion batteries is concluded and compared.Finally,the strategies to improve the electrochemical stability of ILs/DESs in lithium-ion,lithium-metal and post-lithium-ion batteries are proposed.This review would provide a guide to design ILs/DESs with high electrochemical stability for lithium-ion,lithium-metal and postlithium-ion batteries to achieve sustainable and green energy.
基金support provided by the UKRI via Grant No.EP/T024607/1Royal Society via grant number IES\R2\222208.
文摘Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
基金financially supported through the research program between OCP Group and UM6P under the specific agreement AS34-flotation project
文摘Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector designed to efficiently remove carbonates and enhance phosphate enrichment in froth flotation processes.This study focuses on the synthesis of an anionic collector using the saponification reaction of a frying oil sample,subsequently applied to the flotation of calcite and dolomite.To elucidate the adsorption mechanisms of the frying oil collector(FrOC)and sodium oleate,a reference collector,on fluorapatite,calcite,dolomite,and quartz surfaces,comprehensive experiments were conducted,including zeta potential measurements and Fourier transform infrared spectroscopy.Results revealed diverse adsorption affinities of the molecules towards these minerals.To assess the practical performance of the collector,flotation tests were conducted using a natural phosphate ore mixture,employing a BoxBehnken experimental design.Notably,under optimized conditions(pH 9,1000 g/t of FrOC,3.5 min of conditioning,and 6 min of flotation),FrOC exhibited excellent performance,with calcite and dolomite recoveries exceeding 80%,while apatite recovery in the concentrate fraction remained below 10%.This work exemplifies both circular economy practices and the distinctive approach to sustainable mineral processing.