A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by t...A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by the presence of unexpected,dynamic obstacles.They require areas to be revisited periodically to maintain an accurate coverage map,as well as reactive obstacle avoidance.This paper proposes a novel swarmbased control algorithm for multi-robot exploration and repeated coverage in environments with unknown,dynamic obstacles.The algorithm combines two elements:frontier-led swarming for driving exploration by a group of robots,and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles.We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments.We measure both repeated coverage performance and obstacle avoidance ability.Through a series of comparison experiments,we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.展开更多
The eigenvector of a module with six adjacent module's state was constructed according to self-reconfigurable robot M-Cubes and the configuration of system was expressed with the eigenvectors of all modules.Accord...The eigenvector of a module with six adjacent module's state was constructed according to self-reconfigurable robot M-Cubes and the configuration of system was expressed with the eigenvectors of all modules.According to the configuration and motion characteristics of the modules,a 3-dimension motion rule set was provided.The rule sets of each module was run according to eigenvector of the module after the motion direction of system decided and motion rules were selected.At last,the rapid and effective motion and metamorphosis were realized in system.The rule sets are operated on three systems and the distributed motion of system is fully realized.The result of simulation shows that the 3-dimension motion rule sets has perfect applicability and extensibility.The motion steps and communication load of the modules increase with the module number in linear.展开更多
Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary jo...Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible.展开更多
This paper presents a self-assembly control strategy for the swarm modular robots. Simulated and physical experiments are conducted based on the Sambot platform, which is a novel self-assembly modular robot having the...This paper presents a self-assembly control strategy for the swarm modular robots. Simulated and physical experiments are conducted based on the Sambot platform, which is a novel self-assembly modular robot having the characteristics of both the chain-type and the mobile self-reconfigurable robots. Multiple Sambots can autonomously move and connect with one another through self-assembly to form robotic organisms. The configuration connection state table is used to describe the configuration of the robotic structure. A directional self-assembly control model is proposed to perform the self-assembly experiments. The self-assembly process begins with one Sambot as the seed, and then the Docking Sambots use a behavior-based controller to achieve connection with the seed Sambot. The controller is independent of the target configuration. The seed and connected Sambots execute a configuration comparison algorithm to control the growth of the robotic structure. Furthermore, the simul- taneous self-assembly of multiple Sambots is discussed. For multiple configurations, self-assembly experiments are conducted in simulation platform and physical platform of Sambot. The experimental results verify the effectiveness and scalability of the self-assembly algorithms.展开更多
Swarm intelligence embodied by many species such as ants and bees has inspired scholars in swarm robotic researches. This paper presents a novel autonomous self-assembly distributed swarm flying robot-DSFR, which can ...Swarm intelligence embodied by many species such as ants and bees has inspired scholars in swarm robotic researches. This paper presents a novel autonomous self-assembly distributed swarm flying robot-DSFR, which can drive on the ground, autonomously accomplish self-assembly and then fly in the air coordinately. Mechanical and electrical designs of a DSFR module, as well as the kinematics and dynamics analysis, are specifically investigated. Meanwhile, this paper brings forward a generalized adjacency matrix to describe configurations of DSFR structures. Also, the distributed flight control model is established for vertical taking-off and horizontal hovering, which can be applied to control of DSFR systems with arbitrary configurations. Finally, some experiments are carried out to testify and validate the DSFR design, the autonomous self-assembly strategy and the distributed flight control laws.展开更多
Rapid prototyping,real-time control and monitoring of various events in robots are crucial requirements for research in the fields of modular and swarm robotics.A large quantities of resources(time,man power,infrastru...Rapid prototyping,real-time control and monitoring of various events in robots are crucial requirements for research in the fields of modular and swarm robotics.A large quantities of resources(time,man power,infrastructure,etc.)are often invested in programming,interfacing the sensors,debugging the response to algorithms during prototyping and operational phases of a robot development cycle.The cost of developing an optimal infrastructure to efficiently address such control and monitoring requirements increases significantly in the presence of mobile robots.Though numerous solutions have been developed for minimizing the resources spent on hardware prototyping and algorithm validation in both static and mobile scenarios,it can be observed that researchers have either chosen methodologies that conflict with the power and infrastructure constraints of the research field or generated constrained solutions whose applications are restricted to the field itself.This paper develops a solution for addressing the challenges in controlling heterogeneous mobile robots.A platform named Quanta-a cost effective,energy efficient and high-speed wireless infrastructure is prototyped as a part of the research in the field of modular robotics.Quanta is capable of controlling and monitoring various events in/using a robot with the help of a light-weight communication protocol independent of the robot hardware architecture(s).展开更多
基金supported by the DEFENCE SCIENCE&TECHNOLOGY GROUP(DSTG)(9729)The Commonwealth of Australia supported this research through a Defence Science Partnerships agreement with the Australian Defence Science and Technology Group。
文摘A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by the presence of unexpected,dynamic obstacles.They require areas to be revisited periodically to maintain an accurate coverage map,as well as reactive obstacle avoidance.This paper proposes a novel swarmbased control algorithm for multi-robot exploration and repeated coverage in environments with unknown,dynamic obstacles.The algorithm combines two elements:frontier-led swarming for driving exploration by a group of robots,and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles.We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments.We measure both repeated coverage performance and obstacle avoidance ability.Through a series of comparison experiments,we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.
基金The National Natural Science Foundation of China(No.50305021)
文摘The eigenvector of a module with six adjacent module's state was constructed according to self-reconfigurable robot M-Cubes and the configuration of system was expressed with the eigenvectors of all modules.According to the configuration and motion characteristics of the modules,a 3-dimension motion rule set was provided.The rule sets of each module was run according to eigenvector of the module after the motion direction of system decided and motion rules were selected.At last,the rapid and effective motion and metamorphosis were realized in system.The rule sets are operated on three systems and the distributed motion of system is fully realized.The result of simulation shows that the 3-dimension motion rule sets has perfect applicability and extensibility.The motion steps and communication load of the modules increase with the module number in linear.
文摘Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible.
基金supported by the National High Technology Research and Development Program of China ("863" Program) (Grant Nos. 2009AA043901 and 2012AA041402)National Natural Science Foundation of China (Grant No. 61175079)+1 种基金Fundamental Research Funds for the Central Universities (Grant No. YWF-11-02-215)Beijing Technological New Star Project (Grant No. 2008A018)
文摘This paper presents a self-assembly control strategy for the swarm modular robots. Simulated and physical experiments are conducted based on the Sambot platform, which is a novel self-assembly modular robot having the characteristics of both the chain-type and the mobile self-reconfigurable robots. Multiple Sambots can autonomously move and connect with one another through self-assembly to form robotic organisms. The configuration connection state table is used to describe the configuration of the robotic structure. A directional self-assembly control model is proposed to perform the self-assembly experiments. The self-assembly process begins with one Sambot as the seed, and then the Docking Sambots use a behavior-based controller to achieve connection with the seed Sambot. The controller is independent of the target configuration. The seed and connected Sambots execute a configuration comparison algorithm to control the growth of the robotic structure. Furthermore, the simul- taneous self-assembly of multiple Sambots is discussed. For multiple configurations, self-assembly experiments are conducted in simulation platform and physical platform of Sambot. The experimental results verify the effectiveness and scalability of the self-assembly algorithms.
基金the National High-tech Research and Development Program of China(''863''Program)(No.2012AA041402)National Natural Science Foundation of China(Nos.61175079and51105012)Fundamental Research Funds for the Central Universities (No.YWF-11-02-215)
文摘Swarm intelligence embodied by many species such as ants and bees has inspired scholars in swarm robotic researches. This paper presents a novel autonomous self-assembly distributed swarm flying robot-DSFR, which can drive on the ground, autonomously accomplish self-assembly and then fly in the air coordinately. Mechanical and electrical designs of a DSFR module, as well as the kinematics and dynamics analysis, are specifically investigated. Meanwhile, this paper brings forward a generalized adjacency matrix to describe configurations of DSFR structures. Also, the distributed flight control model is established for vertical taking-off and horizontal hovering, which can be applied to control of DSFR systems with arbitrary configurations. Finally, some experiments are carried out to testify and validate the DSFR design, the autonomous self-assembly strategy and the distributed flight control laws.
文摘Rapid prototyping,real-time control and monitoring of various events in robots are crucial requirements for research in the fields of modular and swarm robotics.A large quantities of resources(time,man power,infrastructure,etc.)are often invested in programming,interfacing the sensors,debugging the response to algorithms during prototyping and operational phases of a robot development cycle.The cost of developing an optimal infrastructure to efficiently address such control and monitoring requirements increases significantly in the presence of mobile robots.Though numerous solutions have been developed for minimizing the resources spent on hardware prototyping and algorithm validation in both static and mobile scenarios,it can be observed that researchers have either chosen methodologies that conflict with the power and infrastructure constraints of the research field or generated constrained solutions whose applications are restricted to the field itself.This paper develops a solution for addressing the challenges in controlling heterogeneous mobile robots.A platform named Quanta-a cost effective,energy efficient and high-speed wireless infrastructure is prototyped as a part of the research in the field of modular robotics.Quanta is capable of controlling and monitoring various events in/using a robot with the help of a light-weight communication protocol independent of the robot hardware architecture(s).