D. Crystal, H. Greenberg, A. Kolem, W. Morris, A. Raian, R. Rardin和 M. Trick指出:从我们对Swart的文章的研究,确信变量公式是正确的,但Swart对关键性引理5.4的证明是错误的。在这里,我们给出引理5.4的一个严格证明,证明引理是完...D. Crystal, H. Greenberg, A. Kolem, W. Morris, A. Raian, R. Rardin和 M. Trick指出:从我们对Swart的文章的研究,确信变量公式是正确的,但Swart对关键性引理5.4的证明是错误的。在这里,我们给出引理5.4的一个严格证明,证明引理是完全正确的,并进一步推广引理5.4的结果。 Swart引理5.4;给定了一个n×n双随机矩阵D,它的所有元素是非负整数,并且每一行和与列和都是正整数K,则D能分解成置换矩阵的线性组合。推论:给定一个n×n双随机矩阵D,它的所有元素是非负整数,并且每一行和与列和都正实数K,则D能分解成置换矩阵的线性组合。展开更多
文摘D. Crystal, H. Greenberg, A. Kolem, W. Morris, A. Raian, R. Rardin和 M. Trick指出:从我们对Swart的文章的研究,确信变量公式是正确的,但Swart对关键性引理5.4的证明是错误的。在这里,我们给出引理5.4的一个严格证明,证明引理是完全正确的,并进一步推广引理5.4的结果。 Swart引理5.4;给定了一个n×n双随机矩阵D,它的所有元素是非负整数,并且每一行和与列和都是正整数K,则D能分解成置换矩阵的线性组合。推论:给定一个n×n双随机矩阵D,它的所有元素是非负整数,并且每一行和与列和都正实数K,则D能分解成置换矩阵的线性组合。