SWEDE(subspace method without eigendecomposition)算法是一种不需要协方差阵分解的波达方向估计算法。该方法能降低传统超分辨算法的计算量和复杂度,但也同时降低了均匀线性阵的可测最大信号数。本文基于非圆信号具有椭圆协方差矩阵...SWEDE(subspace method without eigendecomposition)算法是一种不需要协方差阵分解的波达方向估计算法。该方法能降低传统超分辨算法的计算量和复杂度,但也同时降低了均匀线性阵的可测最大信号数。本文基于非圆信号具有椭圆协方差矩阵不为零的特征,并结合SWEDE算法的基本思想,提出了一种改进SWEDE算法:NC-SWEDE算法。该算法利用最大非圆率信号的增维数据模型,相当于将线性阵的可利用阵元数加倍,因而提高了SWEDE算法可测的最大信源数,并提高了算法的分辨力和估计精度。由于引入了非圆信号的相位参数,该算法需要进行二维谱峰搜索,本文采用求极值方法达到了降维的目的。本文分别进行了NC-SWEDE算法最大可分辨信号数、不同D矩阵取法下的算法性能及与传统SWEDE算法性能比较的仿真实验,结果验证了该算法的优越性。展开更多
文摘SWEDE(subspace method without eigendecomposition)算法是一种不需要协方差阵分解的波达方向估计算法。该方法能降低传统超分辨算法的计算量和复杂度,但也同时降低了均匀线性阵的可测最大信号数。本文基于非圆信号具有椭圆协方差矩阵不为零的特征,并结合SWEDE算法的基本思想,提出了一种改进SWEDE算法:NC-SWEDE算法。该算法利用最大非圆率信号的增维数据模型,相当于将线性阵的可利用阵元数加倍,因而提高了SWEDE算法可测的最大信源数,并提高了算法的分辨力和估计精度。由于引入了非圆信号的相位参数,该算法需要进行二维谱峰搜索,本文采用求极值方法达到了降维的目的。本文分别进行了NC-SWEDE算法最大可分辨信号数、不同D矩阵取法下的算法性能及与传统SWEDE算法性能比较的仿真实验,结果验证了该算法的优越性。