The anomalous hysteresis in a perovskite solar cell induced by an asymmetric field is confirmed by a capacitance–voltage measurement. By applying several cycles of alternating reverse and forward scans, this hysteres...The anomalous hysteresis in a perovskite solar cell induced by an asymmetric field is confirmed by a capacitance–voltage measurement. By applying several cycles of alternating reverse and forward scans, this hysteresis phenomenon is obviously alleviated, resulting in a hysteresis-less state in the perovskite solar cell. Meanwhile, the open-circuit voltage and power conversion efficiency of the perovskite solar cell are enhanced by 55.74% and 61.30%, respectively, while the current density and fill factor keep almost invariable. The operation of alleviating hysteresis is essential for further research and is likely to bring in performance gains.展开更多
NMR spectra acquired with experiments using frequency-sweeps such as the wide-band uniform-rate smooth truncation(WURST)spin-echo and Carr-Purcell-Meiboom-Gill(CPMG)sequences cannot be absorptively phased by using onl...NMR spectra acquired with experiments using frequency-sweeps such as the wide-band uniform-rate smooth truncation(WURST)spin-echo and Carr-Purcell-Meiboom-Gill(CPMG)sequences cannot be absorptively phased by using only conventional zerothand first-order phase correction.Implementation of phase correction up to the secondorder is described for obtaining absorptive spectra,which have more desirable line shapes and noise properties than magnitude spectra.The relationship of the second-order phase to the parameters of frequency sweeps is derived.The second-order phasing in the frequency-domain is equivalent to a point spread in the time-domain signal.The application of second-order phase correction is demonstrated with a wideline 35Cl CPMG spikelet spectrum.展开更多
Politics is an important cause of economic growth and fluctuations.We present a new Political Business Cycle(PBC)Theory based on the background of recent Chinese economic transformation and government behaviors,explor...Politics is an important cause of economic growth and fluctuations.We present a new Political Business Cycle(PBC)Theory based on the background of recent Chinese economic transformation and government behaviors,explore the economic impact of the National Congress of the Communist Party of China(CPC),the National People’s Congress(NPC)and Chinese People’s Political Consultive Conference(CPPCC)and how they shape and influence the behaviors of local government officials.Based on 1994-2012 inter-provincial panel data of China and using SYS-GMM and LSDVC,we find that there are significant effects in China of PBC and government administration change.Changes in government administration influence the economic behaviors of local governments,which in turn influence local economic development through fiscal decentralization and political promotion tournament.These effects are sustained and robust.In this paper we offer an economic explanation for the Chinese proverb“a new broom sweeps clean,”and try to verify the Chinese-style Political Business Cycle(CPBC).We provide new ideas for further improving the functions of government,optimizing macroeconomic control,and preventing personnel changes in the government from overheating the economy.展开更多
Incumbent Hong Kong Chief Executive Donald Tsang Yam-kuen breezed through local elec- tions to soundly defeat rival Alan Leong on March 25, and move into his second term as the special administrative region’s top off...Incumbent Hong Kong Chief Executive Donald Tsang Yam-kuen breezed through local elec- tions to soundly defeat rival Alan Leong on March 25, and move into his second term as the special administrative region’s top official.展开更多
In particle transport simulations, radiation effects are olden described by the discrete ordinates (Sn) form of Boltzmann equation. In each ordinate direction, the solution is computed by sweeping the radiation flux...In particle transport simulations, radiation effects are olden described by the discrete ordinates (Sn) form of Boltzmann equation. In each ordinate direction, the solution is computed by sweeping the radiation flux across the grid. Parallel Sn sweep on an unstructured grid can be explicitly modeled as topological traversal through an equivalent directed acyclic graph (DAG), which is a data-driven algorithm. Its traditional design using MPI model results in irregular communication of massive short messages which cannot be efficiently handled by MPI runtime. Meanwhile, in high-end HPC cluster systems, multicore has become the standard processor configuration of a single node. The traditional data-driven algorithm of Sn sweeps has not exploited potential advantages of multi-threading of multicore on shared memory. These advantages, however, as we shall demonstrate, could provide an elegant solution resolving problems in the previous MPI-only design. In this paper, we give a new design of data-driven parallel Sn sweeps using hybrid MPI and Pthread programming, namely Sweep-H, to exploit hierarchical parallelism of processes and threads. With special multi-threading techniques and vertex schedule policy, Sweep-H gets more efficient communication and better load balance. We further present an analytical performance model for Sweep-H to reveal why and when it is advantageous over former MPI counterpart. On a 64-node multicore cluster system with 12 cores per node, 768 cores in total, Sweep-H achieves nearly linear scalability for moderate problem sizes, and better absolute performance than the previous times speedup on 64 nodes). MPI algorithm on more than 16 nodes (by up to two展开更多
Population genomic approaches, which take advantages of high-throughput genotyping, are powerful yet costly methods to scan for selective sweeps. DNA-pooling strategies have been widely used for association studies be...Population genomic approaches, which take advantages of high-throughput genotyping, are powerful yet costly methods to scan for selective sweeps. DNA-pooling strategies have been widely used for association studies because it is a cost-effective alternative to large-scale individual genotyping. Here, we performed an SNP-MaP (single nucleotide polymorphism microarrays and pooling) analysis using samples from Eurasia to evaluate the efficiency of pooling strategy in genome-wide scans for selection. By conducting simulations of allelotype data, we first demonstrated that the boxplot with average heterozygosity (HET) is a promising method to detect strong selective sweeps with a moderate level of pooling error. Based on this, we used a sliding window analysis of HET to detect the large contiguous regions (LCRs) putatively under selective sweeps from Eurasia datasets. This survey identified 63 LCRs in a European population. These signals were further supported by the integrated haplotype score (iHS) test using HapMap II data. We also confirmed the European-specific signatures of positive selection from several previously identified genes (KEL, TRPV5, TRPV6, EPHB6). In summary, our results not only revealed the high credibility of SNP-MaP strategy in scanning for selective sweeps, but also provided an insight into the population differentiation.展开更多
Pandas create sensation both online and offline Multiple levels of devotion exist within the panda fandom. A regular fan might be satisfied visiting the cuddly creatures in zoos just to enjoy their antics, while a “p...Pandas create sensation both online and offline Multiple levels of devotion exist within the panda fandom. A regular fan might be satisfied visiting the cuddly creatures in zoos just to enjoy their antics, while a “professional” one delves into pandas’ diet, behavior, personality, family trees and more.展开更多
Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(...Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(GWAS)of fiber-quality traits in 265 upland cotton breeding intermediate lines(GhBreeding),combined with genome-wide selective sweep analysis(GSSA)and genomic selection(GS),revealed 25 QTL.Most of these QTL were ignored by only using GWAS.The CRISPR/Cas9 mutants of GhMYB_D13 had shorter fiber,which indicates the credibility of QTL to a certain extent.Then these QTL were verified in other cotton natural populations,5 stable QTL were found having broad potential for application in breeding.Additionally,among these 5 stable QTL,superior genotypes of 4 showed an enrichment in most improved new varieties widely cultivated currently.These findings provide insights for how to identify more QTL through combined multiple genomic analysis to apply in breeding.展开更多
3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m...3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.展开更多
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ...Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.展开更多
In the heterogeneous reservoirs,CO_(2) flooding easily leads to CO_(2) gas channeling,which can seriously affect sweeping efficiency and reduce oil recovery.After thoroughly investigating the advantages and shortcomin...In the heterogeneous reservoirs,CO_(2) flooding easily leads to CO_(2) gas channeling,which can seriously affect sweeping efficiency and reduce oil recovery.After thoroughly investigating the advantages and shortcomings of various CO_(2) plugging technologies,this paper focuses on the feasibility of improving conventional water-alternating gas(WAG)through CO_(2)-responsive gel materials.Based on the different chemical reaction mechanisms between the unique chemical structure and CO_(2),changes in the material’s physical and chemical properties can respond to CO_(2).The feasibility of utilizing these property changes for CO_(2)-responsive plugging is explored.Various CO_(2)-responsive gels and gel nanoparticles have been extensively researched in different fields,such as energy,medicine,and biology.This paper surveys the molecular structures,chemical compositions,response mechanisms,and changes of these CO_(2)-responsive gels,aiming to draw insights into the carbon dioxide-enhanced oil recovery(CO_(2)-EOR)field.Finally,the key issues and future development direction of CO_(2)-responsive plugging gels were analyzed.展开更多
The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling softw...The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling software developed by RIPED (Yuan, et al. 1995). The recovery coefficient, remaining oil saturation, sweep efficiency and displacement efficiency were calculated and correlated layer by layer. The results show that the sweep efficiency and displacement efficiency work different effects on different layers in the severely heterogeneous reservoir. The study shows that the displacement efficiency and sweep efficiency play different roles in different layers for severely heterogeneous reservoirs. The displacement efficiency contributes mainly to the high permeability zones, the sweep efficiency to the low permeability zones, both of which contribute to the middle permeable zones. To improve the sweep efficiency in the low permeability zones is of significance for enhancing the whole recovery of the reservoir. It is an important path for improving the effectiveness of chemical flooding in the severely heterogeneous reservoirs to inject ternary combination slug after profile control.展开更多
采用熔融石英毛细管,以含有50mm o l/L十二烷基硫酸钠的50mm o l/L硼酸盐缓冲液为电极缓冲液,以10mm o l/L硼酸盐缓冲液为上样缓冲液,经过对分离条件的优化,成功地建立了胶束电动毛细管色谱结合在线sw eep ing(推扫)富集技术检测中性脂...采用熔融石英毛细管,以含有50mm o l/L十二烷基硫酸钠的50mm o l/L硼酸盐缓冲液为电极缓冲液,以10mm o l/L硼酸盐缓冲液为上样缓冲液,经过对分离条件的优化,成功地建立了胶束电动毛细管色谱结合在线sw eep ing(推扫)富集技术检测中性脂溶性物质旋覆花内酯(acety lb ritann ilac tone,ABL)的实验方法。所建方法的批内、批间测定值的相对标准偏差均小于5%,灵敏度为0.005g/L,回收率大于92%;被检测样品的含量与峰面积呈良好的线性关系,相关系数为0.997 5。用所建立的方法检测了旋覆花素中ABL的含量及其在体内的动态变化,结果表明胶束电动毛细管色谱结合在线sw eep ing样品富集技术可显著提高检测的灵敏度。该方法具有操作简单、进样量小(nL级)、检测速度快等特点,弥补了毛细管电泳在测定痕量组分方面的不足。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11474105 and 51172079)the Science and Technology Program of Guangdong Province,China(Grant Nos.2015B090903078 and 2015B010105011)+1 种基金the Science and Technology Project of Guangzhou City,China(Grant No.201607010246)the Program for Changjiang Scholars and Innovative Research Team in Universities of China(Grant No.IRT13064)
文摘The anomalous hysteresis in a perovskite solar cell induced by an asymmetric field is confirmed by a capacitance–voltage measurement. By applying several cycles of alternating reverse and forward scans, this hysteresis phenomenon is obviously alleviated, resulting in a hysteresis-less state in the perovskite solar cell. Meanwhile, the open-circuit voltage and power conversion efficiency of the perovskite solar cell are enhanced by 55.74% and 61.30%, respectively, while the current density and fill factor keep almost invariable. The operation of alleviating hysteresis is essential for further research and is likely to bring in performance gains.
基金the National High Magnetic Field Laboratory(NHMFL,USA)through NSF DMR-1644779 and the State of Florida.
文摘NMR spectra acquired with experiments using frequency-sweeps such as the wide-band uniform-rate smooth truncation(WURST)spin-echo and Carr-Purcell-Meiboom-Gill(CPMG)sequences cannot be absorptively phased by using only conventional zerothand first-order phase correction.Implementation of phase correction up to the secondorder is described for obtaining absorptive spectra,which have more desirable line shapes and noise properties than magnitude spectra.The relationship of the second-order phase to the parameters of frequency sweeps is derived.The second-order phasing in the frequency-domain is equivalent to a point spread in the time-domain signal.The application of second-order phase correction is demonstrated with a wideline 35Cl CPMG spikelet spectrum.
基金National Social Science Fund“The Institutional Poverty and the Poverty Reduction Model of Inclusive Growth”(11CJL033)The Philosophy and Social Science Planning Fund in Zhejing Province“Estimation of the Conversion Cost of Farmer Citizens in Zhejiang Province and the Study of Public Policy Choice”(14NDJC120YB)The commissioned project in Zhejiang province“the Impact of Political Environment on the Economic and Trade Cooperation between Zhejiang and Taiwan”(201401).
文摘Politics is an important cause of economic growth and fluctuations.We present a new Political Business Cycle(PBC)Theory based on the background of recent Chinese economic transformation and government behaviors,explore the economic impact of the National Congress of the Communist Party of China(CPC),the National People’s Congress(NPC)and Chinese People’s Political Consultive Conference(CPPCC)and how they shape and influence the behaviors of local government officials.Based on 1994-2012 inter-provincial panel data of China and using SYS-GMM and LSDVC,we find that there are significant effects in China of PBC and government administration change.Changes in government administration influence the economic behaviors of local governments,which in turn influence local economic development through fiscal decentralization and political promotion tournament.These effects are sustained and robust.In this paper we offer an economic explanation for the Chinese proverb“a new broom sweeps clean,”and try to verify the Chinese-style Political Business Cycle(CPBC).We provide new ideas for further improving the functions of government,optimizing macroeconomic control,and preventing personnel changes in the government from overheating the economy.
文摘Incumbent Hong Kong Chief Executive Donald Tsang Yam-kuen breezed through local elec- tions to soundly defeat rival Alan Leong on March 25, and move into his second term as the special administrative region’s top official.
基金supported by the National Natural Science Foundation of China under Grant Nos.60925009,61003062,61033009,61272134the National Basic 973 Program of China under Grant Nos.2011CB302502 and 2012CB316502
文摘In particle transport simulations, radiation effects are olden described by the discrete ordinates (Sn) form of Boltzmann equation. In each ordinate direction, the solution is computed by sweeping the radiation flux across the grid. Parallel Sn sweep on an unstructured grid can be explicitly modeled as topological traversal through an equivalent directed acyclic graph (DAG), which is a data-driven algorithm. Its traditional design using MPI model results in irregular communication of massive short messages which cannot be efficiently handled by MPI runtime. Meanwhile, in high-end HPC cluster systems, multicore has become the standard processor configuration of a single node. The traditional data-driven algorithm of Sn sweeps has not exploited potential advantages of multi-threading of multicore on shared memory. These advantages, however, as we shall demonstrate, could provide an elegant solution resolving problems in the previous MPI-only design. In this paper, we give a new design of data-driven parallel Sn sweeps using hybrid MPI and Pthread programming, namely Sweep-H, to exploit hierarchical parallelism of processes and threads. With special multi-threading techniques and vertex schedule policy, Sweep-H gets more efficient communication and better load balance. We further present an analytical performance model for Sweep-H to reveal why and when it is advantageous over former MPI counterpart. On a 64-node multicore cluster system with 12 cores per node, 768 cores in total, Sweep-H achieves nearly linear scalability for moderate problem sizes, and better absolute performance than the previous times speedup on 64 nodes). MPI algorithm on more than 16 nodes (by up to two
基金supported by the National Natural Science Foundation of China (No. 30871348 and 30700470)Educational Department of Jiangxi Province (No. GJJ10303)National Key Laboratory Specific Fund (No. 2060204)
文摘Population genomic approaches, which take advantages of high-throughput genotyping, are powerful yet costly methods to scan for selective sweeps. DNA-pooling strategies have been widely used for association studies because it is a cost-effective alternative to large-scale individual genotyping. Here, we performed an SNP-MaP (single nucleotide polymorphism microarrays and pooling) analysis using samples from Eurasia to evaluate the efficiency of pooling strategy in genome-wide scans for selection. By conducting simulations of allelotype data, we first demonstrated that the boxplot with average heterozygosity (HET) is a promising method to detect strong selective sweeps with a moderate level of pooling error. Based on this, we used a sliding window analysis of HET to detect the large contiguous regions (LCRs) putatively under selective sweeps from Eurasia datasets. This survey identified 63 LCRs in a European population. These signals were further supported by the integrated haplotype score (iHS) test using HapMap II data. We also confirmed the European-specific signatures of positive selection from several previously identified genes (KEL, TRPV5, TRPV6, EPHB6). In summary, our results not only revealed the high credibility of SNP-MaP strategy in scanning for selective sweeps, but also provided an insight into the population differentiation.
文摘Pandas create sensation both online and offline Multiple levels of devotion exist within the panda fandom. A regular fan might be satisfied visiting the cuddly creatures in zoos just to enjoy their antics, while a “professional” one delves into pandas’ diet, behavior, personality, family trees and more.
基金supported by National Key Research and Development Program of China(2022YFF1001400)the National Natural Science Foundation of China(31830062 and 32172071)+1 种基金Innovation and Application of Superior Crop Germplasm Resources of Shihezi(2021NY01)Breeding of New Cotton Varieties and Application of Transgenic Breeding Technology(2022NY01)。
文摘Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(GWAS)of fiber-quality traits in 265 upland cotton breeding intermediate lines(GhBreeding),combined with genome-wide selective sweep analysis(GSSA)and genomic selection(GS),revealed 25 QTL.Most of these QTL were ignored by only using GWAS.The CRISPR/Cas9 mutants of GhMYB_D13 had shorter fiber,which indicates the credibility of QTL to a certain extent.Then these QTL were verified in other cotton natural populations,5 stable QTL were found having broad potential for application in breeding.Additionally,among these 5 stable QTL,superior genotypes of 4 showed an enrichment in most improved new varieties widely cultivated currently.These findings provide insights for how to identify more QTL through combined multiple genomic analysis to apply in breeding.
基金The authors thank the funds supported by the China National Nuclear Corporation under Grants Nos.WUQNYC2101 and WUHTLM2101-04National Natural Science Foundation of China(42074132,42274154).
文摘3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.
文摘Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.
基金Supported by the Open Fund Project of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(YQZC202105)Yangtze University Student Innovation Program(Yz2022018).
文摘In the heterogeneous reservoirs,CO_(2) flooding easily leads to CO_(2) gas channeling,which can seriously affect sweeping efficiency and reduce oil recovery.After thoroughly investigating the advantages and shortcomings of various CO_(2) plugging technologies,this paper focuses on the feasibility of improving conventional water-alternating gas(WAG)through CO_(2)-responsive gel materials.Based on the different chemical reaction mechanisms between the unique chemical structure and CO_(2),changes in the material’s physical and chemical properties can respond to CO_(2).The feasibility of utilizing these property changes for CO_(2)-responsive plugging is explored.Various CO_(2)-responsive gels and gel nanoparticles have been extensively researched in different fields,such as energy,medicine,and biology.This paper surveys the molecular structures,chemical compositions,response mechanisms,and changes of these CO_(2)-responsive gels,aiming to draw insights into the carbon dioxide-enhanced oil recovery(CO_(2)-EOR)field.Finally,the key issues and future development direction of CO_(2)-responsive plugging gels were analyzed.
基金This project is supported by the China National Key Basis Research Project (No: G1999022512)
文摘The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling software developed by RIPED (Yuan, et al. 1995). The recovery coefficient, remaining oil saturation, sweep efficiency and displacement efficiency were calculated and correlated layer by layer. The results show that the sweep efficiency and displacement efficiency work different effects on different layers in the severely heterogeneous reservoir. The study shows that the displacement efficiency and sweep efficiency play different roles in different layers for severely heterogeneous reservoirs. The displacement efficiency contributes mainly to the high permeability zones, the sweep efficiency to the low permeability zones, both of which contribute to the middle permeable zones. To improve the sweep efficiency in the low permeability zones is of significance for enhancing the whole recovery of the reservoir. It is an important path for improving the effectiveness of chemical flooding in the severely heterogeneous reservoirs to inject ternary combination slug after profile control.