期刊文献+
共找到255篇文章
< 1 2 13 >
每页显示 20 50 100
STUDY OF SWEPT SHOCK WAVE AND BOUNDARY LAYER INTERACTIONS
1
作者 邓学蓥 《Chinese Journal of Aeronautics》 SCIE EI CSCD 1998年第4期2-10,共9页
This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonal analysis and correlation analysis to them. Based on the zonal analysis an ... This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonal analysis and correlation analysis to them. Based on the zonal analysis an overall framework of complicated interaction flow structure including both surface flowfield and space flowfield is discussed. Based on correlation analysis the conical interactions induced by four families of shock wave generators have been discussed in detail. Some control parameter and physical mechanism of conical interaction have been revealed. Finally some aspects of the problem and the prospects for future work are suggested. 展开更多
关键词 swept shock wave shock wave/boundary layer interaction zonal analysis correlation analysis
下载PDF
Numerical Simulation of Two-Dimensional Shock/Boundary-Layer Interaction between a Rocket and Booster 被引量:1
2
作者 孙为民 夏南 谭发生 《Advances in Manufacturing》 SCIE CAS 2000年第S1期25-28,共4页
A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume m... A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs. 展开更多
关键词 numerical simulation shock/boundary-layer interaction AERODYNAMICS
下载PDF
HEATING CHARACTERISTICS OF BLUNT SWEPT FIN-INDUCED SHOCK WAVE TURBULENT BOUNDARY LAYER INTERACTION 被引量:4
3
作者 唐贵明 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1998年第2期139-146,共8页
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4... An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4.7) x 10(7)/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30 degrees for a sweepback angle of 67.6 degrees. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10 degrees and secondary separation were detected at deflection of theta greater than or equal to 20 degrees. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements at M greater than or equal to 6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers. 展开更多
关键词 FIN shock wave boundary layer interaction hypersonic flow heat transfer
全文增补中
Model for Asymmetry of Shock/Boundary Layer Interactions in Nozzle Flows 被引量:3
4
作者 Wang Chengpeng Zhuo Changfei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期146-153,共8页
The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was... The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was proposed based on the properties of fluid entrainment in the mixing layer and momentum conservation.The asymmetry model is deduced based on the nozzle flow with restricted shock separation,and is still applicable for free shock separation.Flow deflection angle at nozzle exit is deduced from this model.Steady numerical simulations are conducted to model the asymmetry of the SBLIs in a planar convergent-divergent nozzle tested by previous researchers.The obtained values of deflection angle based on the numerical results of forced symmetric nozzle flows can judge the asymmetry of flows in a nozzle at some operations.It shows that the entrainment of shear layer on the separation induced by SBLTs is one of the reasons for the asymmetry in the confined SBLIs. 展开更多
关键词 asymmetry shock/boundary layer interactionS NOZZLE flow ENTRAINMENT
下载PDF
Numerical evaluation of passive control of shock wave/boundary layer interaction on NACA0012 airfoil using jagged wall 被引量:3
5
作者 Mojtaba Dehghan Manshadi Ramin Rabani 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第5期792-804,共13页
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to app... Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?. 展开更多
关键词 Jagged wall Passive flow control shock wave/boundary layer interaction Aerodynamic efficiency
下载PDF
Hypersonic Shock Wave/Boundary Layer Interactions by a Third-Order Optimized Symmetric WENO Scheme 被引量:1
6
作者 Li Chen Guo Qilong +1 位作者 Li Qin Zhang Hanxin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期524-534,共11页
A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achieveme... A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions. 展开更多
关键词 hypersonic flows shock wave/boundary layer interactions weighted essentially non-oscillatory(WENO)scheme slip boundary conditions
下载PDF
Study of interaction between shock wave and unsteady boundary layer
7
作者 董志勇 韩肇元 《Journal of Zhejiang University Science》 EI CSCD 2003年第1期35-39,共5页
This paper reports theoretical and experimental study of a new type of interaction of a moving shock wave with an unsteady boundary layer. This type of shock wave-boundary layer interaction describes a moving shock wa... This paper reports theoretical and experimental study of a new type of interaction of a moving shock wave with an unsteady boundary layer. This type of shock wave-boundary layer interaction describes a moving shock wave interaction with an unsteady boundary layer induced by another shock wave and a rarefaction wave. So it is different from the interaction of a stationary shock wave with steady boundary layer, also different from the interaction of a reflected moving shock wave at the end of a shock tube with unsteady boundary layer induced by an incident shock. Geometrical shock dynamics is used for the theoretical analysis of the shock wave-unsteady boundary layer interaction, and a double-driver shock tube with a rarefaction wave bursting diaphragm is used for the experimental investigation in this work. 展开更多
关键词 Moving shock wave Unsteady boundary layer interaction
下载PDF
THE INTERACTION OF A SHOCK WAVE WITH THE BOUNDARY LAYER IN A REFLECTED SHOCK TUNNEL
8
作者 徐立功 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第6期545-552,共8页
The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature an... The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature and the Mach number profiles in the boundary layer in reflected shock fixed coordinates has been obtained. To account for equilibrium real gas effects of nitrogen, the numerical results show that the minimum Mach number in the boundary layer has been moved from the wall into the boundary layer with the increasing of the incident shock Mach number. The minimum Mach number, the shock angle in the bifurcated foot and the jet velocity along the wall to the end plate are reduced owing to the Increasing of the area of nozzle throat. The numerical results are in good agreement with measurements. 展开更多
关键词 very THE interaction OF A shock WAVE WITH THE boundary layer IN A REFLECTED shock TUNNEL
下载PDF
Sidewall influence of varying free stream Mach number in ramp induced shock wave boundary layer interactions
9
作者 Raja Mangalagiri Satya P.Jammy 《Theoretical & Applied Mechanics Letters》 CAS 2024年第4期298-305,共8页
This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry bounda... This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry boundary condition in the spanwise direction at free-stream Mach numbers in 3D.The simulations are performed using an in-house compressible supersonic solver“Open SBLIFVM”.Two free stream Mach numbers 2.5,and3 are used in the current work,and the simulated results are compared with the aspect ratio 1 simulations by Mangalagiri and Jammy.The inflow is initialized with a similarity solution;its Reynolds number based on the boundary layer thickness is adjusted such that the Reynolds number at the start of the ramp is kept at 3×10^(5)for all simulations.From the results,it is evident that the introduction of sidewalls resulted in a shorter centerline separation length when compared with the two-dimensional(2D)simulations.This contradicts the results at Mach 2 by Mangalgiri and Jammy where the vortex observed at Mach 2 in the central separation region disappeared with increasing free-stream Mach number.Additionally,the topology of interaction shifted from owl-like separation of the second kind to the first kind when the freestream Mach number increased from2 to 2.5.It can be concluded that the interaction topology is crucial to the increase or decrease of the central separation length when compared to 2D simulations. 展开更多
关键词 shock boundary layer interaction Separation Compressible boundary layers GPGPU simulations RSWBLI
下载PDF
Recent progress in conical shock wave/boundary layer interaction with spanwise pressure gradient
10
作者 Feng-Yuan Zuo Sergio Pirozzoli 《Propulsion and Power Research》 SCIE 2024年第3期295-318,共24页
A common denominator between conical-symmetry and conical shock interaction is the spanwise pressure gradient,which perform more non-uniformity and its interactionflow is more complicated than the spanwise-homogeneous... A common denominator between conical-symmetry and conical shock interaction is the spanwise pressure gradient,which perform more non-uniformity and its interactionflow is more complicated than the spanwise-homogeneous planar shock wave.Recent advances in conical-symmetry and conical shock interactions with turbulent boundary layer are reviewed in specific areas:(i)quasi-conical swept interactions due to compression ramps and sharpfins,(ii)impinging conical shock wave with interactions of plate wall,(iii)laminar double cone in-teractions with consideration of real-gas effects.Substantial success has been achieved in describing the phenomena of the time averaged and instantaneousflow features and the low-frequency unsteadiness,including correlations and coherent structures in the separation bubble,through complementary experimental and numerical studies of swept shock interactions.All available observations are here scrutinized to infer underlying mechanisms of interactions in conicalflow,and provide theoretical foundation and hints forfluidic control techniques.Com-parison with high-fidelity direct numerical simulations is used to quantified the uncertainty of RANS turbulence models in complex interactions.Regarding heat transfer,extensive studies of hypersonicflow over double cone geometries have shown that those can be predicted with reasonable accuracy,even in the presence of high-temperature effects. 展开更多
关键词 Conical shock boundary layer Separatedflows UNSTEADINESS Viscous-inviscid interactions
原文传递
Direct numerical simulation of shock wave/boundary layer interaction controlled by steady microjet in a compression ramp
11
作者 Ruoye XIAO Dong SUN Jian YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期83-102,共20页
Shock wave/boundary layer interaction in a 24°turning angle of the compression ramp at Mach number 2.9 controlled by steady microjet is investigated using direct numerical simulation.Three different jet spacings ... Shock wave/boundary layer interaction in a 24°turning angle of the compression ramp at Mach number 2.9 controlled by steady microjet is investigated using direct numerical simulation.Three different jet spacings which are termed as sparse,moderate and dense are considered,and the induced vortex system and shock structures are compared.A moderate jet spacing configuration is found to generate counter-rotating vortex pairs that transport high-momentum fluid towards the vicinity of wall and strengthen the boundary layer to resist separation,reducing the separation region.The dense jet spacing configuration creates a larger momentum deficit region,reducing the friction downstream of the corner.Analysis of pressure and pressure gradient reveals that dense jet spacing configuration reduces the intensity of separation shock.The impact of varying jet spacings on the turbulent kinetic energy transport mechanism is also investigated by decomposing the budget terms in the transport equation.Furthermore,the spectral characteristics of the separation region are studied using power spectral density and dynamic mode decomposition methods,revealing that moderate jet spacing configuration suppresses low-frequency fluctuations in the separation region. 展开更多
关键词 shock wave/boundary layer interaction Compression ramp Steady microjet Different jet spacings Direct numerical simulation
原文传递
Effects of Number of Bleed Holes on Shock-Wave/Boundary-Layer Interactions in a Transonic Compressor Stator
12
作者 LI Bai ZHOU Xun +1 位作者 LUO Lei DU Wei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期611-624,共14页
An extensive numerical investigation is conducted to characterize the flow separation control in a transonic compressor cascade with a porous bleed.The bleed holes are arranged on the suction surface in a single row,t... An extensive numerical investigation is conducted to characterize the flow separation control in a transonic compressor cascade with a porous bleed.The bleed holes are arranged on the suction surface in a single row,two staggered rows and three staggered rows.For each bleed scheme,five bleed pressure ratios are examined at an inlet Mach number of 1.0.The results indicate that the aerodynamic performance of the cascade is significantly improved by the porous bleed.For the single-row scheme,the maximum reduction in total pressure losses is 57%.For the two-staggered-row and three-staggered-row schemes,there is an optimal bleed pressure ratio of 1.0,and the maximum reductions in total pressure loss are 68% and 75%,respectively.The low loss in the cascade is due to the well-controlled boundary layer.The new local supersonic region created by the bleed hole is the key reason for the improved boundary layer.The vortex induced by side bleeding provides another mechanism for delaying flow separation.Increasing the bleed holes could create multiple local supersonic regions,which reduce the range of the adverse pressure gradient that the boundary layer needs to withstand.This is the reason why cascades with more bleed holes perform better. 展开更多
关键词 transonic compressor stator shock wave/boundary layer interaction porous bleed number of bleed holes
原文传递
A CALCULATING METHOD OF SHOCK WAVE OSCILLATING FREQUENCY DUE TO TURBULENT SHEAR LAYER FLUCTUATIONS IN SUPERSONIC FLOW
13
作者 徐立功 冉政 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第8期777-784,共8页
One of the more severe fluctuating pressure environments encountered in supersonic or hypersonic flows is the shock wave oscillation driven by interaction of a shock wave with boundary layer. The high intensity oscill... One of the more severe fluctuating pressure environments encountered in supersonic or hypersonic flows is the shock wave oscillation driven by interaction of a shock wave with boundary layer. The high intensity oscillating shock wave may induce structure resonance of a high speed vehicle. The research for the shock oscillation used to adopt empirical or semiempirical methods because the phenomenon is very complex. In this paper a theoretical solution on shock oscillating frequency due to turbulent shear layer fluctuations has been obtained from basic conservation equations. Moreover, we have attained the regularity of the frequency of oscillating shock varying with incoming flow Much numbers M and turning angle . The calculating results indicate excellent agreement with measurements. This paper has supplied a valuable analytical method to study aeroelastic problems produced by shock wave oscillation. 展开更多
关键词 shock wave oscillation interaction of shock wave with boundary layer fluctuating pressure eigenfrequency of shock wave turbulent acoustic radiation aeroelastics
下载PDF
Numerical Simulation of Lateral Jet Interaction
14
作者 Jin Chen Yaofeng Liu Jinglong Bo 《Journal of Applied Mathematics and Physics》 2017年第9期1686-1693,共8页
Jet interaction effects on aerodynamic characteristics of aircraft in subsonic/transonic compressible crossflow are investigated numerically. The high reliable CFD method is established and compared with existing expe... Jet interaction effects on aerodynamic characteristics of aircraft in subsonic/transonic compressible crossflow are investigated numerically. The high reliable CFD method is established and compared with existing experimental results. The lateral jet interaction characteristics of lateral jet in subsonic/ transonic compressible crossflow on an ogive-cylinder configuration are simulated numerically. Variation characteristics of normal force amplification factor, pitching moment and amplification factor are analyzed and compared with the results at supersonic condition. Research results and some useful conclusions can be provided for the design of RCS aircraft control system as basis and reference in subsonic/transonic compressible crossflow. 展开更多
关键词 LATERAL JET JET interaction shock Wave/boundary layer interaction NUMERICAL Simulation
下载PDF
Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp 被引量:25
15
作者 LI XinLiang1,FU DeXun2,MA YanWen2 & LIANG Xian1 1 Key Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China 2 The State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第9期1651-1658,共8页
A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9.The blow-and-suction disturbance in the... A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9.The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition.Both the mean wall pressure and the velocity profiles agree with those of the experimental data,which validates the simulation.The turbulent kinetic energy budget in the separation region is analyzed.Results show that the turbulent production term increases fast in the separation region,while the turbulent dissipation term reaches its peak in the near-wall region.The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation.Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble,the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance,but rather the instability of separation bubble. 展开更多
关键词 compression RAMP shock/turbulent boundary layer interaction direct numerical simulation shock oscillation
原文传递
Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators 被引量:8
16
作者 Hao JIANG Jun LIU +2 位作者 Shi-chao LUO Jun-yuan WANG Wei HUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第9期745-760,共16页
The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low mag... The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation.A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma.Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected.On the basis of the relative position of control area and separation point,MHD control can be divided into four types and so effects and mechanisms might be different.Amongst these,D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region.A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied.The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets. 展开更多
关键词 HYPERSONIC shock wave/turbulent boundary layer interaction Magnetohydrodynamic(MHD) Flow control
原文传递
Scaling of interaction lengths for hypersonic shock wave/turbulent boundary layer interactions 被引量:4
17
作者 Yuting HONG Zhufei LI Jiming YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期504-509,共6页
The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacemen... The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacement thickness of boundary layer was correlated with a corrected non-dimensional separation criterion across the interaction after accounting for the wall temperature effects.A large number of hypersonic SWTBLIs were compiled to examine the scaling analysis over a wide range of Mach numbers,Reynolds numbers,and wall temperatures.The results indicate that the hypersonic SWTBLIs with low Reynolds numbers collapse on the supersonic SWTBLIs,while the hypersonic cases with high Reynolds numbers show a more rapid growth of the interaction length than that with low Reynolds numbers.Thus,two scaling relationships are identified according to different Reynolds numbers for the hypersonic SWTBLIs.The scaling analysis provides valuable guidelines for engineering prediction of the interaction length,and thus,enriches the knowledge of hypersonic SWTBLIs. 展开更多
关键词 Hypersonic flow interaction length Scaling laws Separation criterion shock wave/turbulent boundary layer interactions
原文传递
Strong interactions of incident shock wave with boundary layer along compression corner 被引量:2
18
作者 Shanguang GUO Yun WU Hua LIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3149-3157,共9页
The coherent structure and instability of the interaction of incident shock wave with boundary layer developing on a compression corner are experimentally studied.The experiments are carried out in a supersonic wind t... The coherent structure and instability of the interaction of incident shock wave with boundary layer developing on a compression corner are experimentally studied.The experiments are carried out in a supersonic wind tunnel of Mach number 2.Particular attention is paid to shock patterns and unsteady shock motions induced by the separation bubble.The high-speed schlieren is used to visualize the flowfield evolution and to characterize the instability.The snapshot proper orthogonal decomposition of schlieren sequences is applied to investigate the primary coherent structure in the flowfield.Fast Fourier transform and continuous wavelet transformation are applied to characterize the instability.The results show that there are large-scale low-frequency oscillations of the shock waves and small-scale high-frequency pulsations in the separation region.The peak frequency of shock oscillation is mainly concentrated in the range of 100–1000 Hz.The pulsation of the small flow structure in the separation bubble is mainly concentrated above 12.5 k Hz.Based on the results of experimental analysis,the preliminary mechanism of the largescale instability of such interaction is obtained. 展开更多
关键词 shock wave boundary layer interaction Flow mechanism INSTABILITY
原文传递
Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without Spark Jet control 被引量:10
19
作者 Yang Guang Yao Yufeng +3 位作者 Fang Jian Gan Tian Li Qiushi Lu Lipeng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期617-629,共13页
The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction ... The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The , merical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys- tematically validated against the available wind tunnel particle image velocimetry (PIV) measure- ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator "'Spark Jet'" was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis- tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted. 展开更多
关键词 Large-eddy simulation shock-wave:Turbulent boundary layer interaction Spark Jet control
原文传递
Passage shock wave/boundary layer interaction control for transonic compressors using bumps 被引量:2
20
作者 Yongzhen LIU Wei ZHAO +2 位作者 Qingjun ZHAO Qiang ZHOU Jianzhong XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期82-97,共16页
Flow separation due to shock wave/boundary layer interaction is dominated in blade passage with supersonic relative incoming flow,which always accompanies aerodynamic performance penalties.A loss reduction method for ... Flow separation due to shock wave/boundary layer interaction is dominated in blade passage with supersonic relative incoming flow,which always accompanies aerodynamic performance penalties.A loss reduction method for smearing the passage shock foot via Shock Control Bump(SCB)located on transonic compressor rotor blade suction side is implemented to shrink the region of boundary layer separation.The curved windward section of SCB with constant adverse pressure gradient is constructed ahead of passage shock-impingement point at design rotor speed of Rotor 37 to get the improved model.Numerical investigations on both two models have been conducted employing Reynolds-Averaged Navier-Stokes(RANS)method to reveal flow physics of SCB.Comparisons and analyses on simulation results have also been carried out,showing that passage shock foot of baseline is replaced with a family of compression waves and a weaker shock foot for moderate adverse pressure gradient as well as suppression of boundary layer separations and secondary flow of low-momentum fluid within boundary layer.It is found that adiabatic efficiency and total pressure ratio of improved blade exceeds those of baseline at 95%-100%design rotor speed,and then slightly worsens with decrease of rotatory speed till both equal below 60%rated speed.The investigated conclusion implies a potential promise for future practical applications of SCB in both transonic and supersonic compressors. 展开更多
关键词 Flow separation Passage shock shock Control Bump(SCB) shock wave/boundary layer interaction Transonic compressors
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部