期刊文献+
共找到3,235篇文章
< 1 2 162 >
每页显示 20 50 100
Numerical and experimental study on the particle erosion and gas–particle hydrodynamics in an integral multi-jet swirling spout-fluidized bed
1
作者 Wenbin Li Feng Wu +2 位作者 Liuyun Xu Jipeng Sun Xiaoxun Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期90-101,共12页
In this paper,using the computational fluid dynamics based on Euler Lagrange and the commercial software Barracuda VR,the gas-particle hydrodynamics and the erosion of particles on the inner wall and internal componen... In this paper,using the computational fluid dynamics based on Euler Lagrange and the commercial software Barracuda VR,the gas-particle hydrodynamics and the erosion of particles on the inner wall and internal components of the spouted bed in the integrated multi-jet swirling spout-fluidized bed(IMSSFB)are studied.Erosion experiments have obtained the characterization of particle erosion on internal components and verified the relevant numerical models.The results show that:the particle distribution within the IMSSFB is uneven due to the cyclonic effect of the axial swirl vane(ASV),resulting in particle erosion for the ASV being concentrated on one side;when the gas reaches the top,too high an erosion gas velocity leads to gas backflow.As the filling height increases,there is a tendency for the erosion position of the particles on the ASV to expand upwards.However,the effect of increasing gas velocity on the erosion position is insignificant. 展开更多
关键词 Integral multi-jet swirling spout-fluidized bed Gas–particle hydrodynamics Axial swirl vane Uneven Erosion
下载PDF
Prediction of atomization characteristics of pressure swirl nozzle with different structures
2
作者 Jinfan Liu Xin Feng +4 位作者 Hu Liang Weipeng Zhang Yuanyuan Hui Haohan Xu Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期171-184,共14页
The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment... The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment,10 nozzles with different structures are designed to comprehensively cover various geometric factors.In terms of simulation,steady-state simulation with less computational complexity is used to study the flow inside the nozzle.The results show that the diameter of the inlet and outlet,the direction of the inlet,the diameter of the swirl chamber,and the height of the swirl chamber all affect the atomization performance,and the diameter of the inlet and outlet has a greater impact.It is found that under the same flow rate and pressure,the geometric differences do have a significant impact on the atomization characteristics,such as spray angle and SMD(Sauter mean diameter).Specific nozzle structures can be customized according to the actual needs.Data analysis shows that the spray angle is related to the swirl number,and the SMD is related to turbulent kinetic energy.Through data fitting,the equations for predicting the spray angle and the SMD are obtained.The error range of the fitting equation for the prediction of spray angle and SMD is within 15% and 10% respectively.The prediction is expected to be used in engineering to estimate the spray performance at the beginning of a real project. 展开更多
关键词 Pressure swirl nozzle Nozzle structure Numerical simulation Spray angle PREDICTION
下载PDF
Effect of Pre-Swirling Flow on Performance and Flow Fields in Semi-Opened Axial Fan
3
作者 Norimasa Shiomi Pin Liu Yoichi Kinoue 《Open Journal of Fluid Dynamics》 CAS 2023年第2期113-121,共9页
In this study, we tried to improve the performance by giving a pre-swirling flow to the radial inflow that occurred in the semi-opened axial fan. In addition, the flow fields of rotor outlet were clarified experimenta... In this study, we tried to improve the performance by giving a pre-swirling flow to the radial inflow that occurred in the semi-opened axial fan. In addition, the flow fields of rotor outlet were clarified experimentally, and the effect of pre-swirling flow was considered. The experiment was carried out using a performance test wind tunnel with a square cross section of 880 mm. Three types of casings were prepared, in which the blade tip protruded 0%, 20%, and 40% of the meridional chord length. They were called R25, R15, and R05, respectively, in the casing bellmouth model code. Guide blades for generating a pre-swirling flow were installed on the vertical wall surface of the casing. In addition, a vertical wall was installed 60% upstream of the meridional chord length as an obstacle to prevent axial inflow. The velocity fields of the rotor outlet were measured using a hot-wire anemometer. From the results, the pre-swirling flow did not significantly affect the fan performance. When there was no obstacles wall upstream, there was a partial increase in efficiency, but the difference was not so large. When there was an obstacle wall upstream, the efficiency increased overall in the case of R15, but in the case of R05, the efficiency increased only in the low flow rate region, and conversely decreased in the high flow rate region. By observing the blade outlet flow fields when the performance was improved, it was confirmed that the influence of the tip leakage vortex was weakened. 展开更多
关键词 Axial Fan Semi-Opened Narrow Space Pre-swirling Flow Fan Performance
下载PDF
The Swirling Jet Generation Method and Its Effect on the Velocity Distribution
4
作者 Fernández Roque Tiburcio Correa Arredondo JoséArturo +3 位作者 Mejía Carmona Alejandro Sandoval Lezama Jorge Vázquez Flores JoséFélix Tiburcio Fernández Roque 《Journal of Mechanics Engineering and Automation》 2020年第1期16-26,共11页
The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation o... The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation of the swirling jet.In this paper,the velocity distribution obtained experimentally with the method of generation here proposed,which consists of the employment of an axial fan without stators,is compared with the velocity distribution of swirling jets generated with three different methods.It is observed that the velocity distribution obtained with the proposed method is similar with one of the methods found in the references,which uses fixed blades guides at the entry of the pipe.The proposed method is suitable for the generation of the swirling jet and it is considered that it is simpler and more economic to use blades fixed guides. 展开更多
关键词 swirling JET VELOCITY DISTRIBUTION swirl INTENSITY wingtip VORTEX tangential VELOCITY
下载PDF
Supersonic swirling characteristics of natural gas in convergent-divergent nozzles 被引量:8
5
作者 Wen Chuang Cao Xuewen Yang Yan Zhang Jing 《Petroleum Science》 SCIE CAS CSCD 2011年第1期114-119,共6页
The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerical... The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerically simulated based on a new design which incorporates a central body. Axial distribution of the main parameters of gas flow was investigated,while the basic parameters of gas flow were obtained as functions of radius at the nozzle exit.The effect of the nozzle geometry on the swirling separation was analyzed.The numerical results show that water and heavy hydrocarbons can be condensed and separated from natural gas under the combined effect of the low temperature(-80℃) and the centrifugal field(482,400g,g is the acceleration of gravity).The gas dynamic parameters are uniformly distributed correspondingly in the radial central region of the channel,for example the distribution range of the static temperature and the centrifugal acceleration are from -80 to -55℃and 220,000g to 500,000g,respectively,which would create good conditions for the cyclone separation of the liquids.However,high gradients of gas dynamic parameters near the channel walls may impair the process of separation.The geometry of the nozzle has a great influence on the separation performance. Increasing the nozzle convergent angle can improve the separation efficiency.The swirling natural gas can be well separated when the divergent angle takes values from 4°to 12°in the convergent-divergent nozzle. 展开更多
关键词 swirling flow convergent-divergent nozzle SUPERSONIC natural gas separation numerical calculation
下载PDF
A Study of the Rock Breaking Mechanism during Swirling Water Jet Drilling 被引量:5
6
作者 NiHongjian WangRuihe 《Petroleum Science》 SCIE CAS CSCD 2004年第1期39-44,共6页
Based on an analysis of the factors affecting rock breaking and the coupling between rock and fluid during water jet drilling, the rock damage model and the damage-coupling model suitable for the whole rock breaking p... Based on an analysis of the factors affecting rock breaking and the coupling between rock and fluid during water jet drilling, the rock damage model and the damage-coupling model suitable for the whole rock breaking process under the water jet is established with continuous damage mechanics and micro-damage mechanics. The evolvement of rock damage during swirling water jet drilling is simulated on a nonlinear FEM and dynamic rock damage model, and a decoupled method is used to analyze the rock damage. The numerical results agree with the test results to a high degree, which shows the rock breaking ability of the swirling water jet is strong. This is because the jet particle velocity of the swirling water jet is three-dimensional, and its rock-breaking manner mainly has a slopping impact. Thus, the interference from returning fluid is less. All these aspects make it easy to draw and shear the rock surface. The rock breaking process is to break out an annular on the rock surface first, and then the annular develops quickly in both the radial and axial directions, the last part of the rock broken hole bottom is a protruding awl. The advantage of the swirling water jet breaking rock is the heavy breaking efficiency,large breaking area and less energy used to break rock per unite volume, so the swirling water jet can drill in a hole of a large diameter. 展开更多
关键词 swirling water jet rock damage damage mechanism finite element method
下载PDF
Performance assessment of an inline horizontal swirl tube cyclone for gas-liquid separation at high pressure 被引量:4
7
作者 Nurhayati Mellon Azmi M. Shariff 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第6期565-567,共3页
The application of swirl tube cyclone for gas-liquid separation is attractive due to its small size and weight. However, very scarce information on the performance of the swirl tube cyclone especially at high operatin... The application of swirl tube cyclone for gas-liquid separation is attractive due to its small size and weight. However, very scarce information on the performance of the swirl tube cyclone especially at high operating pressure emulating actual field condition was published in journals. Performance assessment was usually done at a low operating pressure using either air-water, air-fine particle mixtures or dense gas such as SF6 . This paper fills the existing gaps and reports the initial findings on the performance assessment of a horizontal swirl tube cyclone for gas-liquid separation operating at a flow rate of 5 MMSCFD at 40-60 bar operating pressure. 展开更多
关键词 compact separator CYCLONE swirl tube natural gas separation
下载PDF
The numerical simulation of a new double swirl static mixer for gas reactants mixing 被引量:4
8
作者 Zhuokai Zhuang Jingtian Yan +3 位作者 Chenglang Sun Haiqiang Wang Yuejun Wang Zhongbiao Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2438-2446,共9页
For the nitrogen oxide removal processes,high performance gas mixer is deeply needed for the injection of NH3 or O3.In this study,a new type of double swirl static mixer in gas mixing was investigated using computatio... For the nitrogen oxide removal processes,high performance gas mixer is deeply needed for the injection of NH3 or O3.In this study,a new type of double swirl static mixer in gas mixing was investigated using computational fluid dynamics(CFD).The results obtained using Particle Image Velocimetry(PIV)correlated well with the results obtained from simulation.The comparisons in pressure loss between the experimental results and the simulation results showed that the model was suitable and accurate for the simulation of the static mixer.Optimal process conditions and design were investigated.When L/D equaled 4,coefficient of variation(COV)was<5%.The inlet velocity did not affect the distributions of turbulent kinetic energy.In terms of both COV and pressure loss,the inner connector is important in the design of the static mixer.The nozzle length should be set at 4 cm.Taking both COV and pressure loss into consideration,the optimal oblique degree is 450.The averaged kinetic energy changed according to process conditions and design.The new static mixer resulted in improved mixing performance in a more compact design.The new static mixer is more energy efficient compared with other SV static mixers.Therefore,the double swirl static mixer is promising in gas mixing. 展开更多
关键词 CFD PIV Gas mixing Double swirl static mixer Pressure loss
下载PDF
Determination of optimal blowing-to-suction flow ratio in mechanized excavation face with wall-mounted swirling ventilation using numerical simulations 被引量:3
9
作者 Runze Gao Pengfei Wang +1 位作者 Yongjun Li Ronghua Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第2期248-264,共17页
Wall-mounted swirling ventilation is a new type of system in mechanized excavation faces with a dust sup-pression performance that is closely related to the blowing-to-suction flow ratio.Physical and simulation models... Wall-mounted swirling ventilation is a new type of system in mechanized excavation faces with a dust sup-pression performance that is closely related to the blowing-to-suction flow ratio.Physical and simulation models were developed according to the No.C103 mechanized excavation face in the Nahe Coal Mine of the Baise Mining Bureau,Guangxi Province to optimize the blowing-to-suction flow ratio for wall-mounted swirling ventilation.Both the k-εturbulence model and the discrete phase model were utilized to simulate airflow field structures and dust concentration distribution patterns at various blowing-to-suction flow ratios.The results suggest that higher blowing-to-suction flow ratios increase the airflow field disturbance around the working face and weaken the intensity of the axial air curtain.On the other hand,both the intensity of the radial air curtain and the dust suppression effect are enhanced.At a blowing-to-suction flow ratio of 0.8,the wall-mounted swirling ventilation system achieved the most favorable dust suppression performance.Both the total dust and respirable dust had their lowest concentrations with maximum efficiencies of reducing both types at 90.33%and 87.16%,respectively. 展开更多
关键词 Mechanized excavation face Wall-mounted swirling ventilation Blowing-to-suction flow ratio Airflow field DUST
下载PDF
ON BASIC EQUATIONS OF TURBULENT SWIRLING GAS-SOLID FLOWS AND THEIR APPLICATION IN CYCLONES 被引量:2
10
作者 Zhou Lixing Tsinghua University,Beijing 100084,ChinaS.L.Soo (University of Illinois at Urbana-Champaign,USA) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1991年第4期309-315,共7页
The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows ... The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows for analyzing the collection efficiency in cyclone separators. 展开更多
关键词 turbulent two-phase flows swirling gas-particle flows cyclone flows two-phase turbulence models
下载PDF
EXPERIMENTAL STUDIES ON SWIRLING AND RECIRCULATING TWO-PHASE FLOW FIELD IN A COLD MODEL OF DUAL-INLET SUDDEN-EXPANSION COMBUSTOR 被引量:1
11
作者 周力行 李荣先 廖昌明 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第4期193-197,共5页
The axial and tangential velocities of gas and particle phases and particle concentration for turbulent swirling and recirculating gas particle (simulating gas droplet) flows in a cold model of a dual inlet sudden exp... The axial and tangential velocities of gas and particle phases and particle concentration for turbulent swirling and recirculating gas particle (simulating gas droplet) flows in a cold model of a dual inlet sudden expansion combustor with partially tangential central tubes, proposed by the present authors, were measured by using a 2 D LDV system and a laser optic fiber system combined with a sampling probe. The results show that there are both gas and particle strongly reverse flows and swirling flows in the head part of the combustor. The velocity slip between gas and particle phases is remarkable. The particle concentration is higher near the wall and lower near the axis. There are two peaks in the concentration profiles near the inlet tubes. The above obtained flow characteristics are favorable to ignition, flame stabilization and combustion. The results can also be used to validate the numerical modeling. 展开更多
关键词 swirling and recirculating FLOWS gas-particle FLOWS sudden-expansion COMBUSTOR LDV measurements EXPERIMENTAL studies
下载PDF
Numerical Analysis on Multi-Field Characteristics and Synergy in a Large-Size Annular Combustion Chamber with Double Swirlers 被引量:2
12
作者 Zaiguo Fu Huanhuan Gao +1 位作者 Zhuoxiong Zeng Jiang Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期805-830,共26页
In order to comprehensively evaluate the flow and heat transfer performance of a large-size annular combustion chamber of a heavy-duty gas turbine,we carried out numerical computation and analyses on the velocity,temp... In order to comprehensively evaluate the flow and heat transfer performance of a large-size annular combustion chamber of a heavy-duty gas turbine,we carried out numerical computation and analyses on the velocity,temperature and pressure fields in the chamber with double swirlers.The mathematical model of the coupling combustion,gas flow,and heat transfer process was established.The influences of the inlet swirling strength,fuel-air ratio and temperature of the premixed gas on the multi-field characteristics and synergy were investigated on the basis of field synergy theory.The results showed that the central recirculation zone induced by the inlet swirling flow grows downstream in the combustion chamber.The velocity and temperature in the outlet section of the chamber tend to be uniform due to the upstream improved synergy.The outer swirl number of the premixed gas flow has a great influence on the comprehensive flow and heat transfer performance of the combustion chamber.The synergy angles change towards benefiting the synergy between velocity and temperature fields with the increasing swirl numbers and inlet gas temperature while the velocity-pressure synergy becomes poor.The increasing fuel-air ratio of premixed gas leads to different trends of the velocity-temperature synergy and velocity-pressure synergy.The comprehensive synergy representing the low-resistance heat transfer performance is evidently dominated mainly by the velocity-temperature synergy. 展开更多
关键词 Annular combustor heat transfer multi-field synergy synergy angle swirling flow.
下载PDF
Large-eddy structures of turbulent swirling flows and methane-air swirling diffusion combustion 被引量:4
13
作者 Liyuan Hu Lixing Zhou Jian Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期419-424,共6页
Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combus... Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures. 展开更多
关键词 swirling combustion . swirling flows .Large-eddy simulation
下载PDF
A swirling jet from a nozzle with tangential inlets and its characteristics in breaking-up rocks 被引量:1
14
作者 Yang Yongyin Zou Deyong +2 位作者 Sun Weiliang Li Xinhui Niu Sicheng 《Petroleum Science》 SCIE CAS CSCD 2012年第1期53-58,共6页
In order to apply a swirling jet to a PDC drill bit, the nozzle performance influenced by nozzle inlet geometric parameters and rock breaking tests under submerged conditions were studied. Numerical simulation was use... In order to apply a swirling jet to a PDC drill bit, the nozzle performance influenced by nozzle inlet geometric parameters and rock breaking tests under submerged conditions were studied. Numerical simulation was used to study the influence of the nozzle structure on the swirling intensity and nozzle discharge coefficient. Simulation results indicate that spreading angle of the swirling jet is greater than that of" the non-swirling jet, and the swirling intensity of the jet is strongly influenced by the length of the nozzle body but weakly by the number of tangential inlets. Rock breaking tests were conducted to evaluate the performance of the swirling jet. It is found that the swirling jet shows a lower threshold pressure to break the rock samples and could break rock more efficiently compared with the non-swirling jet. 展开更多
关键词 NOZZLE JET swirling intensity discharge coefficient simulation rock breaking tests
下载PDF
Flow characterization and dilution effects of N_2 and CO_2 on premixed CH_4/air flames in a swirl-stabilized combustor 被引量:1
15
作者 韩乐 蔡国飙 +2 位作者 王海兴 Renou Bruno Boukhalfa Abdelkrim 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期382-395,共14页
Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goa... Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goal is to provide a systematic assessment on combustion characteristics in diluted regimes for its application to environmentally-friendly approaches such as biogas combustion and exhanst-gas recirculation technology. Two main diluting species, N2 and CO2, are tested at various dilution rates. The results obtained by means of optical diagnostics show that five main flame regimes can be observed for Nz-diluted flames by changing excess air and dilution rate. CO2-diluted flames follow the same pattern evolution except that all the domains are shifted to lower excess air. Both N2 and CO2 dilution affect the lean blow- out (LBO) limits negatively. This behavior can be counter-balanced by reactant preheating which is able to broaden the flammability domain of the diluted flames. Flame reactivity is degraded by increasing dilution rate. Meanwhile, flames are thickened in the presence of both diluting species. NOx emissions are significantly reduced with dilution and proved to be relevant to flame stability diagrams: slight augmentation in NOx emission profiles is related to transitional flame states where instability occurs. Although dilution results in increase in CO emissions at certain levels, optimal dilution rates can still be proposed to achieve an ideal compromise. 展开更多
关键词 dilution effect premixed combustion swirl flow optical diagnostics
下载PDF
Experimental and Numerical Investigation of Swirling Flow on Triple Elbow Pipe Layout 被引量:2
16
作者 Hideharu Takahashi San Shwin +2 位作者 Ari Hamdani Nobuyuki Fujisawa Hiroshige Kikura 《Journal of Flow Control, Measurement & Visualization》 2020年第2期45-62,共18页
The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a sw... The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a swirl generator, consisting of a rotary pipe and honeycomb assembly. The experiments were carried out in turbulent water flow condition at Reynolds number Re = 1 × 104 and inlet swirl intensity S = 1. Ultrasonic measurements were taken at four locations downstream of the third elbow. The two-dimensional velocity field of the flow field was measured using the phased array ultrasonic velocity profiler technique to evaluate the flow field with separation. Furthermore, a numerical simulation was performed and its results were compared with the experimental data. The numerical result was obtained by solving three-dimensional, Reynolds-averaged Navier-Stokes equations with the renormalization group k-ε turbulence model. The experimental results confirmed that the swirling flow condition modified the size of the separation region downstream of the third elbow. A qualitative comparison between the experimental and CFD simulation results of the averaged velocity field downstream of the third elbow showed similar tendency on reverse flow. 展开更多
关键词 swirling Flow TRIPLE ELBOW ULTRASOUND Phased Array Sensor VELOCITY Profile CFD NUMERICAL Simulation
下载PDF
Swirling-strength based large eddy simulation of turbulent flow around single square cylinder at low Reynolds numbers 被引量:4
17
作者 朱祚金 牛建磊 李应林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第8期959-978,共20页
In view of the fact that large scale vortices play the substantial role of momentum transport in turbulent flows, large eddy simulation (LES) is considered as a better simulation model. However, the sub-grid scale ... In view of the fact that large scale vortices play the substantial role of momentum transport in turbulent flows, large eddy simulation (LES) is considered as a better simulation model. However, the sub-grid scale (SGS) models reported so far have not ascertained under what flow conditions the LES can lapse into the direct nu-merical simulation. To overcome this discrepancy, this paper develops a swirling strength based the SGS model to properly model the turbulence intermittency, with the primary characteristics that when the local swirling strength is zero, the local sub-grid viscosity will be vanished. In this paper, the model is used to investigate the flow characteris-tics of zero-incident incompressible turbulent flows around a single square cylinder (SC) at a low Reynolds number range Re ∈ [103, 104]. The flow characteristics investigated include the Reynolds number dependence of lift and drag coefficients, the distributions of time-spanwise averaged variables such as the sub-grid viscosity and the logarithm of Kolmogorov micro-scale to the base of 10 at Re=2 500 and 104, the contours of spanwise and streamwise vorticity components at t = 170. It is revealed that the peak value of sub-grid viscosity ratio and its root mean square (RMS) values grow with the Reynolds number. The dissipation rate of turbulent kinetic energy is larger near the SC solid walls. The instantaneous factor of swirling strength intermittency (FSI) exhibits some laminated structure involved with vortex shedding. 展开更多
关键词 large scale vortex lift and drag coefficient turbulence intermittency swirling strength
下载PDF
Microscopic and macroscopic atomization characteristics of a pressure-swirl atomizer, injecting a viscous fuel oil 被引量:3
18
作者 Seyed Mohammad Ali Najafi Pouria Mikaniki Hojat Ghassemi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期9-22,共14页
Combustion of heavy fuels is one of the main sources of greenhouse gases, particulate emissions, ashes, NOxand SOx. Gasification is an advanced and environmentally friendly process that generates combustible and clean... Combustion of heavy fuels is one of the main sources of greenhouse gases, particulate emissions, ashes, NOxand SOx. Gasification is an advanced and environmentally friendly process that generates combustible and clean gas products such as hydrogen. Some entrained flow gasifiers operate with Heavy Fuel Oil(HFO) feedstock. In this application, HFO atomization is very important in determining the performance and efficiency of the gasifiers.The atomization characteristics of HFO(Mazut) discharging from a pressure-swirl atomizer(PSA) are studied for different pressures difference(Δp) and temperatures in the atmospheric ambient. The investigated parameters include atomizer mass flow rate( _m), discharge coefficient(CD), spray cone angle(θ), breakup length(Lb), the unstable wavelength of undulations on the liquid sheet(λs), global and local SMD(sauter mean diameter) and size distribution of droplets. The characteristics of Mazut sheet breakup are deduced from the shadowgraph technique. The experiments on Mazut film breakup were compared with the predictions obtained from the liquid film breakup model. Validity of the theory for predicting maximum unstable wavelength was investigated for HFO(as a highly viscous liquid). A modification on the formulation of maximum unstable wavelength was presented for HFO. SMD decreases by getting far from the atomizer. The measurement for SMD and θ were compared with the available correlations. The comparisons of the available correlations with the measurements of SMD andθ show a good agreement for Ballester and Varde correlations, respectively. The results show that the experimental sizing data could be presented by Rosin-Rammler distributions very well at different pressure difference and temperatures. 展开更多
关键词 GASIFIER Heavy fuel oil ATOMIZATION Pressure-swirl ATOMIZER Mazut Size distribution Wavelength Viscosity
下载PDF
Experimental study of a heavy fuel oil atomization by pressure-swirl injector in the application of entrained flow gasifier 被引量:2
19
作者 Pouria Mikaniki Seyed Mohammad Ali Najafi Hojat Ghassemi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第4期765-771,共7页
The available SMD(Sauter mean diameter) correlations on pressure-swirl injectors predict droplet sizing very different from each other, especially for heavy fuels. Also there was a lack in the literature for comparing... The available SMD(Sauter mean diameter) correlations on pressure-swirl injectors predict droplet sizing very different from each other, especially for heavy fuels. Also there was a lack in the literature for comparing available correlations. So an experimental study was conducted on a heavy fuel oil(HFO) spray, Mazut 380. A pressure swirl injector was designed and fabricated. The experiments for Mazut at 40℃ and 80℃ were compared with the results for water, including spray half cone angle, breakup length and mean droplet diameter,at different injection pressures. Lower spray angle, higher breakup length and larger droplets were observed for lower injection pressures and higher liquid viscosity. SMD was about 75 μm for water and about 87 μm for Mazut at 80℃. The results for droplet mean diameter were also compared with correlations from previous studies on pressure swirl atomizers. The SMD results show that for water spray, LISA method was in good agreement,also Babu and Ballester correlations were successful when high viscosity fluid was injected. 展开更多
关键词 ATOMIZATION Pressure-swirl INJECTOR Mazut Size distribution FUEL VISCOSITY
下载PDF
Resistance characteristics of the ball packed-bed regenerator of the new-type swirl flow hot blast stove 被引量:1
20
作者 Hongzhi Guo, Xiaohu Cheng, and Shuchen ZhangDepartment of Thermal Engineering, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第1期21-24,共4页
A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiment... A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiments have been done through changing the angle of gas entering into the regenerator. Factors influencing pressure drop have been studied and analyzed. The experimental results can be formulated in the form of the Ergun equation. The regression equation is obtained. And two modified coefficients are offered to the regenerator pressure drop of the new-type swirl flow hot blast stove. 展开更多
关键词 the new-type swirl flow hot blast stove REGENERATOR regression equation resistance drop
下载PDF
上一页 1 2 162 下一页 到第
使用帮助 返回顶部