Air entrainment is known to be one of efficient and inexpensive methods to prevent cavitation damages in hydropower projects.The shape of sudden expansion-fall is used as a common device for mitigating cavitation eros...Air entrainment is known to be one of efficient and inexpensive methods to prevent cavitation damages in hydropower projects.The shape of sudden expansion-fall is used as a common device for mitigating cavitation erosions.The complex flow patterns with cavitation are numerically simulated by using the realizable k-εturbulence model and the air-water mixture model.The calculated results are compared well with the experimental results as well as those obtained with the k-εturbulence model with the Volume Of Fluid(VOF)Model.The calculated results agree well with the experimental data for the aeration cavity and wall pressure.Moreover,the air concentration near sidewall is simulated by a mixture model.It is found that the mixture turbulence model is superior to the VOF turbulence model.展开更多
In recent years, thin slab continuous casting technology has been widely used to improve the quality of the product and to reduce the cost. One of the challenges faced by this technology is to design reasonable flow p...In recent years, thin slab continuous casting technology has been widely used to improve the quality of the product and to reduce the cost. One of the challenges faced by this technology is to design reasonable flow patterns, which strongly affect the surface and inner properties of the final slab in the mold. With the fixed scales and complex geometrical structures of nozzle and funnel type mold, a series of numerical simulations are made to analyze the flow patterns in melt steel using finite volume method based on structured body fitted coordinate grids. The CFD (computational fluid dynamics) package is validated first using one typical case described in previously published studies, and then it is developed to study the effect of operational parameters on fluid flow in thin slab caster. Two operational parameters, casting speed and SEN (submerged entry nozzle) depth, are mainly considered for numerical analysis. On the basis of present simulations, the reasonable SEN submergence depths corresponding to different casting speeds are suggested according to fluid flow characteristics like, flow jet impingement on the narrow side of the mold, flow speed of the melt steel beneath the meniscus and the recirculation region. This is the first stage of study on the numerical analysis of the whole thin slab casting process with electromagnetic brake.展开更多
A 2-D depth averaged RNG k- ε model is developed to simulate the flow in a typical reach of the Upper Yellow River with non-monotonic banks. In order to take account of the effect of the secondary flow in a bend, the...A 2-D depth averaged RNG k- ε model is developed to simulate the flow in a typical reach of the Upper Yellow River with non-monotonic banks. In order to take account of the effect of the secondary flow in a bend, the momentum equations are modified by adding an additional source term. A comparison between the numerical simulation and the field measurements indicates that the improved 2-D depth averaged RNG k- ε model can improve the accuracy of the numerical simulation. An arc spline interpolation method is developed to interpolate the non-monotonic river banks. The method can also be reasonably applied for the 2-D interpolation of the river bed level. Through a comparison of the water surface gradients simulated in the seven bends of the studied reach, some analytical formulae are improved to reasonably calculate the longitudinal and transverse gradients in meandering river reaches. Furthermore, the positions of the maximum water depth and the maximum velocity in a typical bend are discussed.展开更多
基金Project supported by the Key Science Foundation of Ministry of Education of China (Grant No. 2008108111)the National Basic Research Program of China (973 Program, Grant No. 2007CB714105)the Program of New Century Excellent Talents in University (Grant No. NCET-08-0378)
文摘Air entrainment is known to be one of efficient and inexpensive methods to prevent cavitation damages in hydropower projects.The shape of sudden expansion-fall is used as a common device for mitigating cavitation erosions.The complex flow patterns with cavitation are numerically simulated by using the realizable k-εturbulence model and the air-water mixture model.The calculated results are compared well with the experimental results as well as those obtained with the k-εturbulence model with the Volume Of Fluid(VOF)Model.The calculated results agree well with the experimental data for the aeration cavity and wall pressure.Moreover,the air concentration near sidewall is simulated by a mixture model.It is found that the mixture turbulence model is superior to the VOF turbulence model.
文摘In recent years, thin slab continuous casting technology has been widely used to improve the quality of the product and to reduce the cost. One of the challenges faced by this technology is to design reasonable flow patterns, which strongly affect the surface and inner properties of the final slab in the mold. With the fixed scales and complex geometrical structures of nozzle and funnel type mold, a series of numerical simulations are made to analyze the flow patterns in melt steel using finite volume method based on structured body fitted coordinate grids. The CFD (computational fluid dynamics) package is validated first using one typical case described in previously published studies, and then it is developed to study the effect of operational parameters on fluid flow in thin slab caster. Two operational parameters, casting speed and SEN (submerged entry nozzle) depth, are mainly considered for numerical analysis. On the basis of present simulations, the reasonable SEN submergence depths corresponding to different casting speeds are suggested according to fluid flow characteristics like, flow jet impingement on the narrow side of the mold, flow speed of the melt steel beneath the meniscus and the recirculation region. This is the first stage of study on the numerical analysis of the whole thin slab casting process with electromagnetic brake.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.91230111,11361002)the Natural Science Foundation of Ningxia Hui Autonomous Region(Grant No.NZ13086)
文摘A 2-D depth averaged RNG k- ε model is developed to simulate the flow in a typical reach of the Upper Yellow River with non-monotonic banks. In order to take account of the effect of the secondary flow in a bend, the momentum equations are modified by adding an additional source term. A comparison between the numerical simulation and the field measurements indicates that the improved 2-D depth averaged RNG k- ε model can improve the accuracy of the numerical simulation. An arc spline interpolation method is developed to interpolate the non-monotonic river banks. The method can also be reasonably applied for the 2-D interpolation of the river bed level. Through a comparison of the water surface gradients simulated in the seven bends of the studied reach, some analytical formulae are improved to reasonably calculate the longitudinal and transverse gradients in meandering river reaches. Furthermore, the positions of the maximum water depth and the maximum velocity in a typical bend are discussed.