The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment...The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment,10 nozzles with different structures are designed to comprehensively cover various geometric factors.In terms of simulation,steady-state simulation with less computational complexity is used to study the flow inside the nozzle.The results show that the diameter of the inlet and outlet,the direction of the inlet,the diameter of the swirl chamber,and the height of the swirl chamber all affect the atomization performance,and the diameter of the inlet and outlet has a greater impact.It is found that under the same flow rate and pressure,the geometric differences do have a significant impact on the atomization characteristics,such as spray angle and SMD(Sauter mean diameter).Specific nozzle structures can be customized according to the actual needs.Data analysis shows that the spray angle is related to the swirl number,and the SMD is related to turbulent kinetic energy.Through data fitting,the equations for predicting the spray angle and the SMD are obtained.The error range of the fitting equation for the prediction of spray angle and SMD is within 15% and 10% respectively.The prediction is expected to be used in engineering to estimate the spray performance at the beginning of a real project.展开更多
The experimental study on the macro and micro characteristics of the spray from a pressure swirl nozzle embraces the growth of surface unstable wave,disintegration process,spray angle,breakup length and so on.The e...The experimental study on the macro and micro characteristics of the spray from a pressure swirl nozzle embraces the growth of surface unstable wave,disintegration process,spray angle,breakup length and so on.The effects of injection pressure,nozzle geometry and liquid properties on these characteristics are also discussed.The results are helpful to understand the underlying physics of the pressure swirl nozzle and serve as the basis for the practical design,usage and improvement of the nozzle.展开更多
Flow field,heat transfer and inclusion behavior in a 700 mm round bloom mold under the effect of a swirling flow submerged entry nozzle(SEN)were investigated with the aim to enhance the casting process.The results ind...Flow field,heat transfer and inclusion behavior in a 700 mm round bloom mold under the effect of a swirling flow submerged entry nozzle(SEN)were investigated with the aim to enhance the casting process.The results indicate that the impinging flow phenomenon,which is commonly observed in conventional single-port SEN casting,was completely suppressed by the swirling flow SEN coming from a novel swirling flow generator design in tundish.Steel from the SEN port moved towards the mold wall in 360 direction,leading to a uniform temperature distribution in the mold.Compared to a conventional single-port SEN casting,the steel super-heat was decreased by about 5 K at the mold center,and the temperature was increased by around 3.5 K near the meniscus.In addition,the removal ratio of inclusions to the mold top surface in the swirling flow SEN casting was found to be increased.Specifically,the removal ratio of spherical inclusions with diameters of 1,10,50 and 100μm was increased by 18.2%,18.5%,22.6% and 42.7%,respectively.Furthermore,the ratio was raised by 18.2%,20.8%,21.5% and 44.1%for non-spherical inclusions,respectively.展开更多
The spray characteristics of a full-cone pressure swirl nozzle have been investigated in this study.The results were defined by Reynolds number,which focuses on the breakup of liquid film,droplet size,velocity,and liq...The spray characteristics of a full-cone pressure swirl nozzle have been investigated in this study.The results were defined by Reynolds number,which focuses on the breakup of liquid film,droplet size,velocity,and liquid volume flux under different Reynolds numbers at the near-field spray.The spray structure was visualized using a high-speed camera,and the characteristics of droplets were measured using a Phase Doppler Anemometer(PDA)in both the radial and axial directions.The tests were carried out at varying spray pressures(0.2 to 1.0 MPa),corresponding to different Reynolds numbers(5369 to 12006).It was found that when the Reynolds number rises,the liquid became more unstable after leaving the nozzle,causing the liquid film to break up faster.According to the measurements of PDA,the coalescence of droplets increased due to the centrifugal effect.What’s more,the velocity of the droplets fluctuates significantly in the radial direction,and the droplets with a smaller particle size had a higher average velocity.From the perspective of liquid distribution,the increase in Reynolds number caused the spray liquid to move in the radial direction gradually.In contrast,the liquid volume distribution changed in the radial direction more obviously than in the axial direction,growing to the maximum along the radial direction and gradually reducing.It can provide a reference for selecting operating parameters for actual agricultural spray operations and the design of electrostatic nozzles through the research on breakup and droplet characteristics.展开更多
基金supported by the National Key Research and Development Program(2022YFB3504000)the National Natural Science Foundation of China(22122815,21978296)the NSFC-EU project(31961133018)。
文摘The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment,10 nozzles with different structures are designed to comprehensively cover various geometric factors.In terms of simulation,steady-state simulation with less computational complexity is used to study the flow inside the nozzle.The results show that the diameter of the inlet and outlet,the direction of the inlet,the diameter of the swirl chamber,and the height of the swirl chamber all affect the atomization performance,and the diameter of the inlet and outlet has a greater impact.It is found that under the same flow rate and pressure,the geometric differences do have a significant impact on the atomization characteristics,such as spray angle and SMD(Sauter mean diameter).Specific nozzle structures can be customized according to the actual needs.Data analysis shows that the spray angle is related to the swirl number,and the SMD is related to turbulent kinetic energy.Through data fitting,the equations for predicting the spray angle and the SMD are obtained.The error range of the fitting equation for the prediction of spray angle and SMD is within 15% and 10% respectively.The prediction is expected to be used in engineering to estimate the spray performance at the beginning of a real project.
文摘The experimental study on the macro and micro characteristics of the spray from a pressure swirl nozzle embraces the growth of surface unstable wave,disintegration process,spray angle,breakup length and so on.The effects of injection pressure,nozzle geometry and liquid properties on these characteristics are also discussed.The results are helpful to understand the underlying physics of the pressure swirl nozzle and serve as the basis for the practical design,usage and improvement of the nozzle.
基金supported by the National Natural Science Foundation of China(Grant No.51704062)the Fundamental Research Funds for the Central Universities(Grant No.N2025019).
文摘Flow field,heat transfer and inclusion behavior in a 700 mm round bloom mold under the effect of a swirling flow submerged entry nozzle(SEN)were investigated with the aim to enhance the casting process.The results indicate that the impinging flow phenomenon,which is commonly observed in conventional single-port SEN casting,was completely suppressed by the swirling flow SEN coming from a novel swirling flow generator design in tundish.Steel from the SEN port moved towards the mold wall in 360 direction,leading to a uniform temperature distribution in the mold.Compared to a conventional single-port SEN casting,the steel super-heat was decreased by about 5 K at the mold center,and the temperature was increased by around 3.5 K near the meniscus.In addition,the removal ratio of inclusions to the mold top surface in the swirling flow SEN casting was found to be increased.Specifically,the removal ratio of spherical inclusions with diameters of 1,10,50 and 100μm was increased by 18.2%,18.5%,22.6% and 42.7%,respectively.Furthermore,the ratio was raised by 18.2%,20.8%,21.5% and 44.1%for non-spherical inclusions,respectively.
基金support provided by National Natural Science Foundation of China(Grant No.31971797)National Natural Science Foundation of China(Grant No.32271997)+3 种基金China Agriculture Research System of MOF and MARA(CARS-26)General Program of Guang-dong Natural Science Foundation(2021A1515010923)Guangdong Provincial Special Fund For Modern Agriculture Industry Technology Innovation Teams(Grant No.2023KJ108)Key-Area Research and Development Program of Guangdong Province(2023B 0202090001).
文摘The spray characteristics of a full-cone pressure swirl nozzle have been investigated in this study.The results were defined by Reynolds number,which focuses on the breakup of liquid film,droplet size,velocity,and liquid volume flux under different Reynolds numbers at the near-field spray.The spray structure was visualized using a high-speed camera,and the characteristics of droplets were measured using a Phase Doppler Anemometer(PDA)in both the radial and axial directions.The tests were carried out at varying spray pressures(0.2 to 1.0 MPa),corresponding to different Reynolds numbers(5369 to 12006).It was found that when the Reynolds number rises,the liquid became more unstable after leaving the nozzle,causing the liquid film to break up faster.According to the measurements of PDA,the coalescence of droplets increased due to the centrifugal effect.What’s more,the velocity of the droplets fluctuates significantly in the radial direction,and the droplets with a smaller particle size had a higher average velocity.From the perspective of liquid distribution,the increase in Reynolds number caused the spray liquid to move in the radial direction gradually.In contrast,the liquid volume distribution changed in the radial direction more obviously than in the axial direction,growing to the maximum along the radial direction and gradually reducing.It can provide a reference for selecting operating parameters for actual agricultural spray operations and the design of electrostatic nozzles through the research on breakup and droplet characteristics.