Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback contr...Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback controller. Therefore, when the initial power and the final stable power are determined, the particle swarm optimization algorithm is used to find the optimal controller parameters to minimize the load tracking error. Since there are many combinations of initial stable power and final stable power, it is not possible to find the optimal controller parameters for all combinations, so the neural network is used to take the final stable power and the initial stable power as input, and the optimal controller parameters as the output. This method obtains the optimal state feedback controller switching control method can achieve a very excellent load tracking effect in the case of continuous power change, in the power change time point, the response is fast, in the controller parameter switching time point, the actual power does not fluctuate due to the change of controller parameters. .展开更多
For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SF...For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.展开更多
This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is consid...This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.展开更多
Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an ...Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an important method in process control. Therefore, this paper studies the informative property of a data set in a single-input single-output (SISO) closed-loop system with a switching controller. It is proved that this data set is informative if the controller switches among at least two modes (i.e., feedback laws). Our result does not require any assumption on the way of switch and removes the constraints on the switching manner required in some classical literature. Finally, simulation case studies based on a continuous stirred-tank reactor (CSTR) process are given to validate the results.展开更多
In this paper, switched controllers are designed for a class of nonlinear discrete singular systems and a class of discrete singular bilinear systems. An invariant principle is presented for such switched nonlinear si...In this paper, switched controllers are designed for a class of nonlinear discrete singular systems and a class of discrete singular bilinear systems. An invariant principle is presented for such switched nonlinear singular systems. The invariant principle and the switched controllers are used to globally stabilize a class of singular bilinear systems that are not open-loop stable.展开更多
In order to design a suitable controller which can achieve accurate trajectory tracking and a good control performance, and guarantee the stability and robustness of a robot system due to external disturbances error a...In order to design a suitable controller which can achieve accurate trajectory tracking and a good control performance, and guarantee the stability and robustness of a robot system due to external disturbances error and internal parameter variations, an adaptive switching control strategy is proposed. The proposed scheme is designed under the condition of bounded distances and consists of an adaptive switching law and a PD controller. Based on the Lyapunov stability theory, it is proved that the proposed scheme can guarantee the tracking performance of the robotic manipulator and is adapted to varying unknown loads. Simulations are carded out on a two-link robotic manipulator, which illustrate the feasibility and validity of the proposed control scheme and the robustness for variational payloads.展开更多
A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a p...A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.展开更多
Efficient walking is one of the main goals of researches on biped robots. A feasible way is to translate the understanding from human walking into robot walking, for example, an artificial control approach on a human ...Efficient walking is one of the main goals of researches on biped robots. A feasible way is to translate the understanding from human walking into robot walking, for example, an artificial control approach on a human like walking structure. In this paper, a walking pattern based on Center of Pressure (COP) switched and modeled after human walking is introduced firstly. Then, a parameterization method for the proposed walking gait is presented. In view of the complication, a multi-space planning method which divides the whole planning task into three sub-spaces, including simplified model space, work space and joint space, is proposed. Furthermore, a finite-state-based control method is also developed to implement the proposed walking pattern. The state switches of this method are driven by sensor events. For convincing verification, a 2D simulation system with a 9-1ink planar biped robot is developed. The simulation results exhibit an efficient walking gait.展开更多
In order to realize the fault diagnosis of the control circuit of all-electronic computer interlocking system(ACIS)for railway signals,taking a five-wire switch electronic control module as an research object,we propo...In order to realize the fault diagnosis of the control circuit of all-electronic computer interlocking system(ACIS)for railway signals,taking a five-wire switch electronic control module as an research object,we propose a method of selecting the sample set of the basic classifier by roulette method and realizing fault diagnosis by using SVM-AdaBoost.The experimental results show that the proportion of basic classifier samples affects classification accuracy,which reaches the highest when the proportion is 85%.When selecting the sample set of basic classifier by roulette method,the fault diagnosis accuracy is generally higher than that of the maximum weight priority method.When the optimal proportion 85%is taken,the accuracy is highest up to 96.3%.More importantly,this way can better adapt to the critical data and improve the anti-interference ability of the algorithm,and therefore it provides a basis for fault diagnosis of ACIS.展开更多
This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropria...This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropriate sliding mode controllers according to different control demands in different regions of the state space. It is shown that the highspeed nonsingular terminal switched sliding mode(HNT-SSM)which is the representation of different control demands and enforced by the HNT-SSMC has the property of global highspeed convergence compared with the nonsingular fast terminal sliding mode(NFTSM), and provides the global non-singularity.The simulation study of an application example is carried out to validate the effectiveness of the proposed strategy.展开更多
In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonabl...In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries.展开更多
A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstabl...A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.展开更多
This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satis...This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satisfy different performance criteria imposed at different sampling times.In order to ensure recursive feasibility of the switching MOMPC and stability of the resulted closed-loop system,the dual-mode control method is used to design the switching MOMPC controller.In this method,a local control law with some free-parameters is constructed using the control Lyapunov function technique to enlarge the terminal state set of MOMPC.The correction term is computed if the states are out of the terminal set and the free-parameters of the local control law are computed if the states are in the terminal set.The recursive feasibility of the MOMPC and stability of the resulted closed-loop system are established in the presence of constraints and arbitrary switches between cost functions.Finally,implementation of the switching MOMPC controller is demonstrated with a chemical process example for the continuous stirred tank reactor.展开更多
We use the approach of “optimal” switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the perf...We use the approach of “optimal” switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the performances. We prove that for a typical class of nonlinear systems disturbed by random noise, the multiple model adaptive switching control based on WLS (Weighted Least Squares) or projected-LS (Least Squares) is stable and convergent.展开更多
A new approach of generating transient chaos from two-dimensional(2D) continuous autonomous systems within finite time is presented.Based on an absolute-value switching law,the phenomenon of transient chaos takes pl...A new approach of generating transient chaos from two-dimensional(2D) continuous autonomous systems within finite time is presented.Based on an absolute-value switching law,the phenomenon of transient chaos takes place by switching between three 2D systems.Basic dynamic behavior of the systems is investigated.Numerical examples illustrate the validity of the results.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy ...An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy is composed of a linear adaptive controller, a neural network(NN) based nonlinear adaptive controller and a switching mechanism. An incremental model is derived to represent the considered system and an improved robust adaptive law is chosen to update the parameters of the linear adaptive controller. A new performance criterion of the switching mechanism is designed to select the proper controller. Using this control scheme, all the signals in the system are proved to be bounded. Numerical examples verify the effectiveness of the proposed algorithm.展开更多
Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum...Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum is an eco-friendly technology compared to switching in SF 6 gas,which is the strongest greenhouse gas according to the Kyoto Protocol.Vacuum,an eco-friendly natural medium,is promising for reducing the usage of SF 6 gas in current switching in transmission voltage.Second,switching in vacuum achieves faster current interruption than existing alternating current(AC)switching technolo-gies.A vacuum circuit breaker(VCB)that uses an electromagnetic repulsion actuator is able to achieve a theoretical limit of AC interruption,which can interrupt a short-circuit current in the first half-cycle of a fault current,compared to the more common three cycles for existing current switching technologies.This can thus greatly enhance the transient stability of power networks in the presence of short-circuit faults,especially for ultra-and extra-high-voltage power transmission lines.Third,based on fast vacuum switching technology,various brilliant applications emerge,which are benefiting the power systems.They include the applications in the fields of direct current(DC)circuit breakers(CBs),fault current lim-iting,power quality improvement,generator CBs,and so forth.Fast vacuum switching technology is promising for controlled switching technology in power systems because it has low variation in terms of opening and closing times.With this controlled switching,vacuum switching technology may change the“gene”of power systems,by which power switching transients will become smoother.展开更多
The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical...The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.展开更多
文摘Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback controller. Therefore, when the initial power and the final stable power are determined, the particle swarm optimization algorithm is used to find the optimal controller parameters to minimize the load tracking error. Since there are many combinations of initial stable power and final stable power, it is not possible to find the optimal controller parameters for all combinations, so the neural network is used to take the final stable power and the initial stable power as input, and the optimal controller parameters as the output. This method obtains the optimal state feedback controller switching control method can achieve a very excellent load tracking effect in the case of continuous power change, in the power change time point, the response is fast, in the controller parameter switching time point, the actual power does not fluctuate due to the change of controller parameters. .
基金supported by the National Natural Science Foundation of China(62473354).
文摘For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.
基金This work was supported by the National Natural Science Foundation of China (No.60574013, 60274009), and the Natural Science Fundation ofLiaoning Province (No.20032020).
文摘This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.
基金Supported by the National Basic Research Program of China (2010CB731800)the National Natural Science Foundation of China (60974059, 60736026, 61021063, 60904044, 61290324)Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation
文摘Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an important method in process control. Therefore, this paper studies the informative property of a data set in a single-input single-output (SISO) closed-loop system with a switching controller. It is proved that this data set is informative if the controller switches among at least two modes (i.e., feedback laws). Our result does not require any assumption on the way of switch and removes the constraints on the switching manner required in some classical literature. Finally, simulation case studies based on a continuous stirred-tank reactor (CSTR) process are given to validate the results.
基金This work was supported by the Science Technical Foundation of Liaoning of China (No. 2001401041)
文摘In this paper, switched controllers are designed for a class of nonlinear discrete singular systems and a class of discrete singular bilinear systems. An invariant principle is presented for such switched nonlinear singular systems. The invariant principle and the switched controllers are used to globally stabilize a class of singular bilinear systems that are not open-loop stable.
基金The National Natural Science Foundation of China(No.61273119,61374038,61473079)
文摘In order to design a suitable controller which can achieve accurate trajectory tracking and a good control performance, and guarantee the stability and robustness of a robot system due to external disturbances error and internal parameter variations, an adaptive switching control strategy is proposed. The proposed scheme is designed under the condition of bounded distances and consists of an adaptive switching law and a PD controller. Based on the Lyapunov stability theory, it is proved that the proposed scheme can guarantee the tracking performance of the robotic manipulator and is adapted to varying unknown loads. Simulations are carded out on a two-link robotic manipulator, which illustrate the feasibility and validity of the proposed control scheme and the robustness for variational payloads.
基金supported by the National Outstanding Youth Science Foundation(61125306)the National Natural Science Foundation of Major Research Plan(91016004+2 种基金61034002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110092110020)the Scientific Research Foundation of Graduate School of Southeast University(YBJJ1103)
文摘A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.
基金Acknowledgements The work was supported by National Natural Science Foundation of China under grant 50775037 and 51075071.
文摘Efficient walking is one of the main goals of researches on biped robots. A feasible way is to translate the understanding from human walking into robot walking, for example, an artificial control approach on a human like walking structure. In this paper, a walking pattern based on Center of Pressure (COP) switched and modeled after human walking is introduced firstly. Then, a parameterization method for the proposed walking gait is presented. In view of the complication, a multi-space planning method which divides the whole planning task into three sub-spaces, including simplified model space, work space and joint space, is proposed. Furthermore, a finite-state-based control method is also developed to implement the proposed walking pattern. The state switches of this method are driven by sensor events. For convincing verification, a 2D simulation system with a 9-1ink planar biped robot is developed. The simulation results exhibit an efficient walking gait.
基金Natural Science Foundation of Gansu Province(Nos.18JR3RA130,2018C-11,2018A-022)Science Fund of Lanzhou Jiaotong University(No.2017022)。
文摘In order to realize the fault diagnosis of the control circuit of all-electronic computer interlocking system(ACIS)for railway signals,taking a five-wire switch electronic control module as an research object,we propose a method of selecting the sample set of the basic classifier by roulette method and realizing fault diagnosis by using SVM-AdaBoost.The experimental results show that the proportion of basic classifier samples affects classification accuracy,which reaches the highest when the proportion is 85%.When selecting the sample set of basic classifier by roulette method,the fault diagnosis accuracy is generally higher than that of the maximum weight priority method.When the optimal proportion 85%is taken,the accuracy is highest up to 96.3%.More importantly,this way can better adapt to the critical data and improve the anti-interference ability of the algorithm,and therefore it provides a basis for fault diagnosis of ACIS.
基金supported partially by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(NJZY13279)
文摘This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropriate sliding mode controllers according to different control demands in different regions of the state space. It is shown that the highspeed nonsingular terminal switched sliding mode(HNT-SSM)which is the representation of different control demands and enforced by the HNT-SSMC has the property of global highspeed convergence compared with the nonsingular fast terminal sliding mode(NFTSM), and provides the global non-singularity.The simulation study of an application example is carried out to validate the effectiveness of the proposed strategy.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005441,51890885)open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201906)+1 种基金Zhejiang Province Natural Science Foundation of China(Grant No.LQ21E050017)China Postdoctoral Science Foundation(Grant Nos.2021M692777,2021T140594).
文摘In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries.
基金the National Natural Science Foundation of China(No.60674027)China Postdoctoral Science Foundation(No.20070410336)the Postdoctor Foundation of Jiangsu Province(No.0602042B).
文摘A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.
基金Supported by the National Natural Science Foundation of China(61374111)the Natural Science Foundation of Zhejiang Province(LY13F030006)Agricultural Key Program of Ningbo City(2014C10068)
文摘This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satisfy different performance criteria imposed at different sampling times.In order to ensure recursive feasibility of the switching MOMPC and stability of the resulted closed-loop system,the dual-mode control method is used to design the switching MOMPC controller.In this method,a local control law with some free-parameters is constructed using the control Lyapunov function technique to enlarge the terminal state set of MOMPC.The correction term is computed if the states are out of the terminal set and the free-parameters of the local control law are computed if the states are in the terminal set.The recursive feasibility of the MOMPC and stability of the resulted closed-loop system are established in the presence of constraints and arbitrary switches between cost functions.Finally,implementation of the switching MOMPC controller is demonstrated with a chemical process example for the continuous stirred tank reactor.
基金This work was supported by the National Natural Science Foundation of China.
文摘We use the approach of “optimal” switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the performances. We prove that for a typical class of nonlinear systems disturbed by random noise, the multiple model adaptive switching control based on WLS (Weighted Least Squares) or projected-LS (Least Squares) is stable and convergent.
基金Project supported by the Natural Science Foundation of Liaoning Province,China (Grant No. 201102181)
文摘A new approach of generating transient chaos from two-dimensional(2D) continuous autonomous systems within finite time is presented.Based on an absolute-value switching law,the phenomenon of transient chaos takes place by switching between three 2D systems.Basic dynamic behavior of the systems is investigated.Numerical examples illustrate the validity of the results.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金Supported by the National Natural Science Foundation of China(61333010,21376077,61203157)the Natural Science Foundation of Shanghai(14ZR1421800)State Key Laboratory of Synthetical Automation for Process Industries(PAL-N201404)
文摘An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy is composed of a linear adaptive controller, a neural network(NN) based nonlinear adaptive controller and a switching mechanism. An incremental model is derived to represent the considered system and an improved robust adaptive law is chosen to update the parameters of the linear adaptive controller. A new performance criterion of the switching mechanism is designed to select the proper controller. Using this control scheme, all the signals in the system are proved to be bounded. Numerical examples verify the effectiveness of the proposed algorithm.
基金supported in part by the National Natural Science Foundation of China (51937009 and 51877166)the Key Research and Development Program of Shaanxi Province (2019ZDLGY18-04)
文摘Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum is an eco-friendly technology compared to switching in SF 6 gas,which is the strongest greenhouse gas according to the Kyoto Protocol.Vacuum,an eco-friendly natural medium,is promising for reducing the usage of SF 6 gas in current switching in transmission voltage.Second,switching in vacuum achieves faster current interruption than existing alternating current(AC)switching technolo-gies.A vacuum circuit breaker(VCB)that uses an electromagnetic repulsion actuator is able to achieve a theoretical limit of AC interruption,which can interrupt a short-circuit current in the first half-cycle of a fault current,compared to the more common three cycles for existing current switching technologies.This can thus greatly enhance the transient stability of power networks in the presence of short-circuit faults,especially for ultra-and extra-high-voltage power transmission lines.Third,based on fast vacuum switching technology,various brilliant applications emerge,which are benefiting the power systems.They include the applications in the fields of direct current(DC)circuit breakers(CBs),fault current lim-iting,power quality improvement,generator CBs,and so forth.Fast vacuum switching technology is promising for controlled switching technology in power systems because it has low variation in terms of opening and closing times.With this controlled switching,vacuum switching technology may change the“gene”of power systems,by which power switching transients will become smoother.
基金Supported by the National Natural Science Foundation of China (60704002)
文摘The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.