The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the powe...The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the power grid.In order to further optimize the control effect of the quasi-Z source grid-connected photovoltaic inverter,a fuzzy proportional complex integral control(PCI)method is proposed for the current internal loop control.This method can eliminate the steady-state error,and has the characteristic of zero steady-state error adjustment for the AC disturbance signal of a specific frequency.The inductance-capacitance-inductance(LCL)filter is adopted in the grid-connected circuit,and the feedback capacitive current is taken as the control variable of the inner loop to form the active damping control method,which can not only effectively suppress the resonance of the LCL circuit,but also significantly inhibit the high-order harmonics in the grid-connected current.Finally,a system simulation model is built in MATLAB/Simulink to verify the superiority and effectiveness of the proposed method.展开更多
A cost-effective component minimized embedded controlled Z-source inverter for induction motor drive is presented. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with t...A cost-effective component minimized embedded controlled Z-source inverter for induction motor drive is presented. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with the advantages of the z impedance network (two inductors in series and two X connected capacitors). This new topology, besides the self-boost property, has low switch count and it can operate as a buck-boost inverter. As a result, the new embedded controlled reduced switch Z-source inverter system provides ride through capability during voltage sags, reduces line harmonics, improves power factor, reliability and extends output voltage range. Analysis, simulation and experiment result will be presented to demonstrate these new features.展开更多
Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circu...Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.展开更多
The full bridge zero voltage zero current switching ( FB-ZVZCS ) , which could adjust the output power by keeping the duty ratio of lagging leg constant and changing the duty ratio of leading leg, was a common circu...The full bridge zero voltage zero current switching ( FB-ZVZCS ) , which could adjust the output power by keeping the duty ratio of lagging leg constant and changing the duty ratio of leading leg, was a common circuit of soft switching arc welding inverter power source. However, when the duty ratio of leading leg was reduced to zero, the output power stayed the constant value instead of becoming zero. The working status and waveforms of some major parameters were studied in this paper while the duty ratio of leading leg was zero. It was concluded that the minimum output power of soft switching inverter was related to the charging voltage of paraUel capacitors, and the output power also could be reduced by reducing the duty ratio of lagging leg. A novel two-stage continuous PWM control method that could switch working-mode between full bridge and half bridge was put forward in this paper. This kind of control method could further reduce the output power of soft switching inverter in order to meet the requirement of low heat input of sheet metal welding.展开更多
In this paper,a new generalized step-up multilevel DC-AC converter is proposed,which is suitable for applications with low-voltage input sources,such as photovoltaic power generation and electric vehicles.This inverte...In this paper,a new generalized step-up multilevel DC-AC converter is proposed,which is suitable for applications with low-voltage input sources,such as photovoltaic power generation and electric vehicles.This inverter can achieve a high voltage gain by controlling the series-parallel conversion of the DC power supply and capacitors.Only one DC voltage source and a few power devices are employed.The maximum output voltage and the number of output levels can be further increased through the switched-capacitor unit’s extension and the submodule cascaded extension.Moreover,the capacitor voltages are self-balanced without complicated voltage control circuits.The complementary operating mechanism between each pair of switches simplifies the modulation algorithm.The inductiveload ability is fully taken into account in the proposed inverter.Additionally,a remarkable characteristic of the inverter is that the charging and discharging states among different capacitors are synchronous,which reduces the voltage ripple of the frontend capacitors.The circuit structure,the working principle,the modulation strategy,the capacitors and losses analysis are presented in detail.Afterwards,the advantages of the proposed inverter are analyzed by comparing with other recently proposed inverters.Finally,the steady-state and dynamic performance of the proposed inverter is verified and validated by simulation and experiment.展开更多
In power converter control,predictive control has several merits,such as simple concept and fast response.However,the necessity to use the weighting factor inside the cost function makes the control design complex in ...In power converter control,predictive control has several merits,such as simple concept and fast response.However,the necessity to use the weighting factor inside the cost function makes the control design complex in the case of regulating multivariables where the value of the weighting factor is obtained by a nontrivial process.Also,it primarily depends on the system parameters and operating points of the control system.This paper aims to enhance the model predictive algorithm of the singlestage topology of a quasi-Z Source Inverter(qZSI).The concept of a multi-objective optimization approach is used in addition to the sub-cost function definition to remove the weighting factors.By using the sub-cost function definition,the inductor current is pushed away from the main loop of the predictive algorithm.Thus,no weighting factor is needed to manage the priority of the inductor current.The other two control targets,which are the capacitor voltage and load currents,will be controlled by the multi-objective optimization approach without using any weighting factors.A detailed theoretical analysis of the proposed technique will be given and validated based on simulation results.展开更多
逆变器的安全性和可靠性直接关系到电机驱动系统的正常运行。在研究逆变器在正常和故障状态下开关函数模型的基础上,提出一种功率管开路故障快速简易诊断方法。该方法根据故障和正常态器件承受电压的不同,采用简单的硬件电路来诊断和定...逆变器的安全性和可靠性直接关系到电机驱动系统的正常运行。在研究逆变器在正常和故障状态下开关函数模型的基础上,提出一种功率管开路故障快速简易诊断方法。该方法根据故障和正常态器件承受电压的不同,采用简单的硬件电路来诊断和定位器件的开路故障。为保障诊断的有效性和可靠性,提出采用开关信号上升沿延时的方法来避免因IGBT开通和关断延迟造成的误诊断,并给出延时时间的确定方法。在搭建的感应电机变频调速(variable voltage and variable frequency,VVVF)控制和永磁同步电动机矢量控制系统中进行实验验证,实验结果表明,所提故障诊断方法能有效诊断逆变器单管和桥臂的开路故障。展开更多
研究了一种用于三相电压型并网逆变器的新型直接功率控制策略——预测直接功率控制(Predictive Direct Power Control,P-DPC)。重点讨论了P-DPC不同的电压矢量选择原则和电压矢量作用时间的处理方法,以降低低次电流谐波成分,获得更好的...研究了一种用于三相电压型并网逆变器的新型直接功率控制策略——预测直接功率控制(Predictive Direct Power Control,P-DPC)。重点讨论了P-DPC不同的电压矢量选择原则和电压矢量作用时间的处理方法,以降低低次电流谐波成分,获得更好的动、静态性能。该P-DPC可实现恒定的开关频率,解决了传统开关表直接功率控制策略(LUT-DPC)开关频率不固定的弊病,继承了直接功率控制策略功率快速调节的固有特点,且无需旋转坐标变换和空间矢量脉宽调制。在一台2kVA并网逆变器实验样机上对传统LUT-DPC、矢量控制和P-DPC进行了仿真和实验研究。结果表明了本文提出方法的有效性和其在可再生能源开发利用中的工程实用前景。展开更多
基金the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University under Grant No.2018-103the Colleges and University Scientific Research Funds of Gansu Province under Grant No.2017A-026。
文摘The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the power grid.In order to further optimize the control effect of the quasi-Z source grid-connected photovoltaic inverter,a fuzzy proportional complex integral control(PCI)method is proposed for the current internal loop control.This method can eliminate the steady-state error,and has the characteristic of zero steady-state error adjustment for the AC disturbance signal of a specific frequency.The inductance-capacitance-inductance(LCL)filter is adopted in the grid-connected circuit,and the feedback capacitive current is taken as the control variable of the inner loop to form the active damping control method,which can not only effectively suppress the resonance of the LCL circuit,but also significantly inhibit the high-order harmonics in the grid-connected current.Finally,a system simulation model is built in MATLAB/Simulink to verify the superiority and effectiveness of the proposed method.
文摘A cost-effective component minimized embedded controlled Z-source inverter for induction motor drive is presented. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with the advantages of the z impedance network (two inductors in series and two X connected capacitors). This new topology, besides the self-boost property, has low switch count and it can operate as a buck-boost inverter. As a result, the new embedded controlled reduced switch Z-source inverter system provides ride through capability during voltage sags, reduces line harmonics, improves power factor, reliability and extends output voltage range. Analysis, simulation and experiment result will be presented to demonstrate these new features.
文摘Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.
文摘The full bridge zero voltage zero current switching ( FB-ZVZCS ) , which could adjust the output power by keeping the duty ratio of lagging leg constant and changing the duty ratio of leading leg, was a common circuit of soft switching arc welding inverter power source. However, when the duty ratio of leading leg was reduced to zero, the output power stayed the constant value instead of becoming zero. The working status and waveforms of some major parameters were studied in this paper while the duty ratio of leading leg was zero. It was concluded that the minimum output power of soft switching inverter was related to the charging voltage of paraUel capacitors, and the output power also could be reduced by reducing the duty ratio of lagging leg. A novel two-stage continuous PWM control method that could switch working-mode between full bridge and half bridge was put forward in this paper. This kind of control method could further reduce the output power of soft switching inverter in order to meet the requirement of low heat input of sheet metal welding.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51507155in part by the Youth key Teacher Project of Henan Higher Educational Institutions under Grant 2019GGJS011.
文摘In this paper,a new generalized step-up multilevel DC-AC converter is proposed,which is suitable for applications with low-voltage input sources,such as photovoltaic power generation and electric vehicles.This inverter can achieve a high voltage gain by controlling the series-parallel conversion of the DC power supply and capacitors.Only one DC voltage source and a few power devices are employed.The maximum output voltage and the number of output levels can be further increased through the switched-capacitor unit’s extension and the submodule cascaded extension.Moreover,the capacitor voltages are self-balanced without complicated voltage control circuits.The complementary operating mechanism between each pair of switches simplifies the modulation algorithm.The inductiveload ability is fully taken into account in the proposed inverter.Additionally,a remarkable characteristic of the inverter is that the charging and discharging states among different capacitors are synchronous,which reduces the voltage ripple of the frontend capacitors.The circuit structure,the working principle,the modulation strategy,the capacitors and losses analysis are presented in detail.Afterwards,the advantages of the proposed inverter are analyzed by comparing with other recently proposed inverters.Finally,the steady-state and dynamic performance of the proposed inverter is verified and validated by simulation and experiment.
基金supported in part by the Estonian Research Council grant PUT1443in part by the Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts,ZEBE,grant 2014-2020.4.01.15-0016 funded by the European Regional Development Fund.
文摘In power converter control,predictive control has several merits,such as simple concept and fast response.However,the necessity to use the weighting factor inside the cost function makes the control design complex in the case of regulating multivariables where the value of the weighting factor is obtained by a nontrivial process.Also,it primarily depends on the system parameters and operating points of the control system.This paper aims to enhance the model predictive algorithm of the singlestage topology of a quasi-Z Source Inverter(qZSI).The concept of a multi-objective optimization approach is used in addition to the sub-cost function definition to remove the weighting factors.By using the sub-cost function definition,the inductor current is pushed away from the main loop of the predictive algorithm.Thus,no weighting factor is needed to manage the priority of the inductor current.The other two control targets,which are the capacitor voltage and load currents,will be controlled by the multi-objective optimization approach without using any weighting factors.A detailed theoretical analysis of the proposed technique will be given and validated based on simulation results.
文摘逆变器的安全性和可靠性直接关系到电机驱动系统的正常运行。在研究逆变器在正常和故障状态下开关函数模型的基础上,提出一种功率管开路故障快速简易诊断方法。该方法根据故障和正常态器件承受电压的不同,采用简单的硬件电路来诊断和定位器件的开路故障。为保障诊断的有效性和可靠性,提出采用开关信号上升沿延时的方法来避免因IGBT开通和关断延迟造成的误诊断,并给出延时时间的确定方法。在搭建的感应电机变频调速(variable voltage and variable frequency,VVVF)控制和永磁同步电动机矢量控制系统中进行实验验证,实验结果表明,所提故障诊断方法能有效诊断逆变器单管和桥臂的开路故障。
文摘研究了一种用于三相电压型并网逆变器的新型直接功率控制策略——预测直接功率控制(Predictive Direct Power Control,P-DPC)。重点讨论了P-DPC不同的电压矢量选择原则和电压矢量作用时间的处理方法,以降低低次电流谐波成分,获得更好的动、静态性能。该P-DPC可实现恒定的开关频率,解决了传统开关表直接功率控制策略(LUT-DPC)开关频率不固定的弊病,继承了直接功率控制策略功率快速调节的固有特点,且无需旋转坐标变换和空间矢量脉宽调制。在一台2kVA并网逆变器实验样机上对传统LUT-DPC、矢量控制和P-DPC进行了仿真和实验研究。结果表明了本文提出方法的有效性和其在可再生能源开发利用中的工程实用前景。