As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagno...As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagnoses the essential interaction relationship between interference and switching activity based on the timely and area measured waveform,analyzes and studies the production mechanism and coupling path of interference mode,and sets up circuit model according to the features of transverse mode interference and common mode interference.Put forward different suppression methods finally.展开更多
For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control ...For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control considering resistance voltage drop and derives its mathematical models.The improved algorithm is compared with the former one.The simulation and experimental results show that the improved algorithm can effectively reduce the output current ripple,achieve good tracking of the given current,improve the control accuracy,and verify the effectiveness and superiority of the method.展开更多
This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V proces...This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load.展开更多
In view of reasonable explanation of intermittent subharmonics and chaos that can be gained from coupling filter between circuits,this paper discusses a method that maps time bifurcation with parameter bifurcation.Bas...In view of reasonable explanation of intermittent subharmonics and chaos that can be gained from coupling filter between circuits,this paper discusses a method that maps time bifurcation with parameter bifurcation.Based on this mapping method,the general analysis method of characteristic multiplier,which is originally aimed at parameter bifurcation,can be used for the study of intermittency,i.e.,time bifurcation.In this paper,all researches coming from characteristic multipliers,parameter-bifurcation diagrams,and the largest Lyapunov exponent indicate the same results as those produced by simulation and experiment.Thus,it is proved theoretically that the intermittency in switching power converter can be explained in terms of coupling of spurious interference.展开更多
Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circu...Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.展开更多
The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supp...The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm.展开更多
Aiming to make a high power direct current supply safely used in coal mine production, this paper made a deep research on characteristics of intrinsically safe power supply, using the mathematical model established ac...Aiming to make a high power direct current supply safely used in coal mine production, this paper made a deep research on characteristics of intrinsically safe power supply, using the mathematical model established according to coal mine intrinsic safety standards. It provides theory support for the application of high power intrinsically safe power supply. The released energy of output short circuit of switch power supply, and the close related factors that influence the biggest output short-circuit spark discharge energy are the theoretical basis of the power supply. It is shown how to make a high power intrinsically safe power supply using the calculated values in the mathematical model, and take values from intrinsically safe requirements parameters scope, then this theoretical calculation value can be developed as the ultimate basis for research of the power supply. It gets the identification method of intrinsically safe from mathematics model of intrinsically safe power supply characteristics study, which solves the problem of theory and application of designing different power intrinsically safe power supply, and designs a kind of high power intrinsically safe power supply through this method. energy, flyback展开更多
A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space eq...A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>展开更多
This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified...This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.展开更多
This paper represents current research in low-power Very Large Scale Integration (VLSI) domain. Nowadays low power has become more sought research topic in electronic industry. Power dissipation is the most important ...This paper represents current research in low-power Very Large Scale Integration (VLSI) domain. Nowadays low power has become more sought research topic in electronic industry. Power dissipation is the most important area while designing the VLSI chip. Today almost all of the high speed switching devices include the Ternary Content Addressable Memory (TCAM) as one of the most important features. When a device consumes less power that becomes reliable and it would work with more efficiency. Complementary Metal Oxide Semiconductor (CMOS) technology is best known for low power consumption devices. This paper aims at designing a router application device which consumes less power and works more efficiently. Various strategies, methodologies and power management techniques for low power circuits and systems are discussed in this research. From this research the challenges could be developed that might be met while designing low power high performance circuit. This work aims at developing Data Aware AND-type match line architecture for TCAM. A TCAM macro of 256 × 128 was designed using Cadence Advanced Development Environment (ADE) with 90 nm technology file from Taiwan Semiconductor Manufacturing Company (TSMC). The result shows that the proposed Data Aware architecture provides around 35% speed and 45% power improvement over existing architecture.展开更多
The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its out...The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its output voltage can be obtained by modulating their delay time and pulse widths. The PSM topology and control principle are presented in this paper. The simple algorithms for the control system are explained clearly. The switch power supply (SPS) module has been built and the test results show it can meet the requirements of the auxiliary heating system. Now, 112 SPS modules and the whole system have already been developed. Its maximum output is about 72 kV/93 A. The protection time is less than 5 t*s. The different outputs of this power supply are used for the electron cyclotron resonant heating (ECRH) system with different duty ratios. The experimental results of the entire system are presented. The results indicate that the whole system can meet the requirements of the auxiliary heating system on HL-2A.展开更多
In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from t...In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from the user to the access point(AP), and assist the wireless power transfer from the AP to the user. To maximize the information rate from the user to the AP, we derive the closed form expression of the optimal power splitting(PS) factor, and the time allocation scheme to obtain the optimal time switching(TS) factor. Simulation results show that for both PS and TS protocols, the proposed DF based bidirectional relay systems can improve the information rate as compared with the amplify-and-forward(AF) based bidirectional relay systems.展开更多
Through theoretical analysis of thyristor switch, criterion of turn-off was derived for the design of thyristor switch. The expression of parameter design and its math model during the turn-off were deduced. The simul...Through theoretical analysis of thyristor switch, criterion of turn-off was derived for the design of thyristor switch. The expression of parameter design and its math model during the turn-off were deduced. The simulation and experiment have been accomplished to validate the analysis.展开更多
Voltage and frequency are usually considered and assessed independently in the design and operation of electrical networks. However, these two are linked. Each and every malfunctioning electrical system has an impact ...Voltage and frequency are usually considered and assessed independently in the design and operation of electrical networks. However, these two are linked. Each and every malfunctioning electrical system has an impact on both voltage and frequency. This paper presents the opportunity for monitoring the distributed electrical energy by means of a system that monitors, controls, and provides a breakpoint based on high or low voltage and frequency tripping mechanism that avoids any damage to the load. The designed system comprised a switch mode power supply (SMPS), a direct digital synthesizer (DDS), and PIC16F876A microcontroller techniques for stable voltage and frequency outputs. Proteus design suite version 8.11 software and Benchcope SDS1102CN were used for modeling and simulation. The hardware prototype was implemented at a telecom cell site for data capturing and analysis. Test results showed that the implementation of the prototype provided stable and constant outputs of 222 V/50 Hz and 112 V/60 Hz which constituted 99% and 99.8% efficiency for voltage and frequency performance respectively. The paper also discusses different technologies that can be adopted by the system to mitigate voltage and frequency effects on customer appliances.展开更多
This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types ...This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.展开更多
A novel silicon carbide(SiC) trench metal–oxide–semiconductor field-effect transistor(MOSFET) with a dual shield gate(DSG) and optimized junction field-effect transistor(JFET) layer(ODSG-TMOS) is proposed. The combi...A novel silicon carbide(SiC) trench metal–oxide–semiconductor field-effect transistor(MOSFET) with a dual shield gate(DSG) and optimized junction field-effect transistor(JFET) layer(ODSG-TMOS) is proposed. The combination of the DSG and optimized JFET layer not only significantly improves the device’s dynamic performance but also greatly enhances the safe operating area(SOA). Numerical analysis is carried out with Silvaco TCAD to study the performance of the proposed structure. Simulation results show that comparing with the conventional asymmetric trench MOSFET(Con-ATMOS), the specific on-resistance(Ron,sp) is significantly reduced at almost the same avalanche breakdown voltage(BVav). Moreover, the DSG structure brings about much smaller reverse transfer capacitance(Crss) and input capacitance(Ciss), which helps to reduce the gate–drain charge(Qgd) and gate charge(Qg). Therefore, the high frequency figure of merit(HFFOM) of Ron,sp·Qgdand Ron,sp· Qgfor the proposed ODSG-TMOS are improved by 83.5% and 76.4%, respectively.The switching power loss of the proposed ODSG-TMOS is 77.0% lower than that of the Con-ATMOS. In addition, the SOA of the proposed device is also enhanced. The saturation drain current(Id,sat) at a gate voltage(Vgs) of 15 V for the ODSGTMOS is reduced by 17.2% owing to the JFET effect provided by the lower shield gate(SG) at a large drain voltage. With the reduced Id,sat, the short-circuit withstand time is improved by 87.5% compared with the Con-ATMOS. The large-current turn-off capability is also improved, which is important for the widely used inductive load applications.展开更多
Parallel equalization is widely used in contemporary times.The paper introduces several ways of working as well as advantages and disadvantages of switching parallel equalization circuits.And the UC3907 and UC3902 chi...Parallel equalization is widely used in contemporary times.The paper introduces several ways of working as well as advantages and disadvantages of switching parallel equalization circuits.And the UC3907 and UC3902 chips as the core of the high-power switch are taken as an example to introduce the application of power supply parallel equalization technology in real life,reflecting the advantages of parallel power supply.It could provide scientific basis and technical reference for meteorological environment.展开更多
Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the impr...Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the improved working efficiency of the large amounts of pulse modulesand accurate requirements for the power coherent combining applications. This paper presents a trigger generator based on a laser diodetriggered GaAs photoconductive semiconductor switch (PCSS) with low jitter and compact size characteristics. It avoids the high currentsthat are harmful to high-gain mode PCSSs. In the trigger circuit, a 200 pF capacitor is charged by a microsecond-scale 18 kV pulse and thendischarged via the high-gain mode GaAs PCSS to trigger the high-power trigatron switch. When triggered by the ~10 ns pulse generated by thePCSS, the DC-charged trigatron can operate in the 20e35 kV range with 10 ns rise time and 1 ns delay-time jitter.展开更多
The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with co...The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.展开更多
NPN-type small and medium power switching transistors in 3DK series are used to conduct analyses and studies of accelerating degradation. Through three group studies of accelerating degradation in different temperatur...NPN-type small and medium power switching transistors in 3DK series are used to conduct analyses and studies of accelerating degradation. Through three group studies of accelerating degradation in different temperature-humidity constant stresses, the failure sensitive parameters of transistors are identified and the lifetime of samples is extrapolated from the performance degradation data. Average lifetimes in three common distributions are given, when, combined with the Hallberg-Peck temperature-humidity model, the storage lifetime of transistor samples in the natural storage condition is extrapolated between 105-10^7 h. According to its definition, the accelerating factor is 1462 in 100 ℃/100% relative humidity (RH) stress condition, and 25 ℃/25% RH stress con- dition. Finally, the degradation causes of performance parameters of the test samples are analyzed. The findings can provide certain references for the storage reliability of domestic transistors.展开更多
基金Tianjin Natunal science Foundation of China(No:05YFSYSF033)
文摘As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagnoses the essential interaction relationship between interference and switching activity based on the timely and area measured waveform,analyzes and studies the production mechanism and coupling path of interference mode,and sets up circuit model according to the features of transverse mode interference and common mode interference.Put forward different suppression methods finally.
基金supported by the National Science Foundation of China(No.51607096)。
文摘For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control considering resistance voltage drop and derives its mathematical models.The improved algorithm is compared with the former one.The simulation and experimental results show that the improved algorithm can effectively reduce the output current ripple,achieve good tracking of the given current,improve the control accuracy,and verify the effectiveness and superiority of the method.
文摘This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load.
基金supported by the National Natural Science Foundation of China (No.60402001)the National High Technology Research and Development Program of China (No.2004AA1Z1060).
文摘In view of reasonable explanation of intermittent subharmonics and chaos that can be gained from coupling filter between circuits,this paper discusses a method that maps time bifurcation with parameter bifurcation.Based on this mapping method,the general analysis method of characteristic multiplier,which is originally aimed at parameter bifurcation,can be used for the study of intermittency,i.e.,time bifurcation.In this paper,all researches coming from characteristic multipliers,parameter-bifurcation diagrams,and the largest Lyapunov exponent indicate the same results as those produced by simulation and experiment.Thus,it is proved theoretically that the intermittency in switching power converter can be explained in terms of coupling of spurious interference.
文摘Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.
基金supported by National Natural Science Foundation of China(No.50977086)
文摘The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm.
文摘Aiming to make a high power direct current supply safely used in coal mine production, this paper made a deep research on characteristics of intrinsically safe power supply, using the mathematical model established according to coal mine intrinsic safety standards. It provides theory support for the application of high power intrinsically safe power supply. The released energy of output short circuit of switch power supply, and the close related factors that influence the biggest output short-circuit spark discharge energy are the theoretical basis of the power supply. It is shown how to make a high power intrinsically safe power supply using the calculated values in the mathematical model, and take values from intrinsically safe requirements parameters scope, then this theoretical calculation value can be developed as the ultimate basis for research of the power supply. It gets the identification method of intrinsically safe from mathematics model of intrinsically safe power supply characteristics study, which solves the problem of theory and application of designing different power intrinsically safe power supply, and designs a kind of high power intrinsically safe power supply through this method. energy, flyback
文摘A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>
文摘This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.
文摘This paper represents current research in low-power Very Large Scale Integration (VLSI) domain. Nowadays low power has become more sought research topic in electronic industry. Power dissipation is the most important area while designing the VLSI chip. Today almost all of the high speed switching devices include the Ternary Content Addressable Memory (TCAM) as one of the most important features. When a device consumes less power that becomes reliable and it would work with more efficiency. Complementary Metal Oxide Semiconductor (CMOS) technology is best known for low power consumption devices. This paper aims at designing a router application device which consumes less power and works more efficiently. Various strategies, methodologies and power management techniques for low power circuits and systems are discussed in this research. From this research the challenges could be developed that might be met while designing low power high performance circuit. This work aims at developing Data Aware AND-type match line architecture for TCAM. A TCAM macro of 256 × 128 was designed using Cadence Advanced Development Environment (ADE) with 90 nm technology file from Taiwan Semiconductor Manufacturing Company (TSMC). The result shows that the proposed Data Aware architecture provides around 35% speed and 45% power improvement over existing architecture.
文摘The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its output voltage can be obtained by modulating their delay time and pulse widths. The PSM topology and control principle are presented in this paper. The simple algorithms for the control system are explained clearly. The switch power supply (SPS) module has been built and the test results show it can meet the requirements of the auxiliary heating system. Now, 112 SPS modules and the whole system have already been developed. Its maximum output is about 72 kV/93 A. The protection time is less than 5 t*s. The different outputs of this power supply are used for the electron cyclotron resonant heating (ECRH) system with different duty ratios. The experimental results of the entire system are presented. The results indicate that the whole system can meet the requirements of the auxiliary heating system on HL-2A.
基金supported in part by the National Natural Science Foundation of China(No.61401330,No.61371127)
文摘In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from the user to the access point(AP), and assist the wireless power transfer from the AP to the user. To maximize the information rate from the user to the AP, we derive the closed form expression of the optimal power splitting(PS) factor, and the time allocation scheme to obtain the optimal time switching(TS) factor. Simulation results show that for both PS and TS protocols, the proposed DF based bidirectional relay systems can improve the information rate as compared with the amplify-and-forward(AF) based bidirectional relay systems.
基金the National Meg-Science Engineering Project of the Chinese Government.
文摘Through theoretical analysis of thyristor switch, criterion of turn-off was derived for the design of thyristor switch. The expression of parameter design and its math model during the turn-off were deduced. The simulation and experiment have been accomplished to validate the analysis.
文摘Voltage and frequency are usually considered and assessed independently in the design and operation of electrical networks. However, these two are linked. Each and every malfunctioning electrical system has an impact on both voltage and frequency. This paper presents the opportunity for monitoring the distributed electrical energy by means of a system that monitors, controls, and provides a breakpoint based on high or low voltage and frequency tripping mechanism that avoids any damage to the load. The designed system comprised a switch mode power supply (SMPS), a direct digital synthesizer (DDS), and PIC16F876A microcontroller techniques for stable voltage and frequency outputs. Proteus design suite version 8.11 software and Benchcope SDS1102CN were used for modeling and simulation. The hardware prototype was implemented at a telecom cell site for data capturing and analysis. Test results showed that the implementation of the prototype provided stable and constant outputs of 222 V/50 Hz and 112 V/60 Hz which constituted 99% and 99.8% efficiency for voltage and frequency performance respectively. The paper also discusses different technologies that can be adopted by the system to mitigate voltage and frequency effects on customer appliances.
文摘This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.
基金Project supported by the China Postdoctoral Science Foundation (Grant No. 2020M682607)。
文摘A novel silicon carbide(SiC) trench metal–oxide–semiconductor field-effect transistor(MOSFET) with a dual shield gate(DSG) and optimized junction field-effect transistor(JFET) layer(ODSG-TMOS) is proposed. The combination of the DSG and optimized JFET layer not only significantly improves the device’s dynamic performance but also greatly enhances the safe operating area(SOA). Numerical analysis is carried out with Silvaco TCAD to study the performance of the proposed structure. Simulation results show that comparing with the conventional asymmetric trench MOSFET(Con-ATMOS), the specific on-resistance(Ron,sp) is significantly reduced at almost the same avalanche breakdown voltage(BVav). Moreover, the DSG structure brings about much smaller reverse transfer capacitance(Crss) and input capacitance(Ciss), which helps to reduce the gate–drain charge(Qgd) and gate charge(Qg). Therefore, the high frequency figure of merit(HFFOM) of Ron,sp·Qgdand Ron,sp· Qgfor the proposed ODSG-TMOS are improved by 83.5% and 76.4%, respectively.The switching power loss of the proposed ODSG-TMOS is 77.0% lower than that of the Con-ATMOS. In addition, the SOA of the proposed device is also enhanced. The saturation drain current(Id,sat) at a gate voltage(Vgs) of 15 V for the ODSGTMOS is reduced by 17.2% owing to the JFET effect provided by the lower shield gate(SG) at a large drain voltage. With the reduced Id,sat, the short-circuit withstand time is improved by 87.5% compared with the Con-ATMOS. The large-current turn-off capability is also improved, which is important for the widely used inductive load applications.
文摘Parallel equalization is widely used in contemporary times.The paper introduces several ways of working as well as advantages and disadvantages of switching parallel equalization circuits.And the UC3907 and UC3902 chips as the core of the high-power switch are taken as an example to introduce the application of power supply parallel equalization technology in real life,reflecting the advantages of parallel power supply.It could provide scientific basis and technical reference for meteorological environment.
基金This work was supported by the National Science Foundation of China under grant No.51477177.
文摘Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the improved working efficiency of the large amounts of pulse modulesand accurate requirements for the power coherent combining applications. This paper presents a trigger generator based on a laser diodetriggered GaAs photoconductive semiconductor switch (PCSS) with low jitter and compact size characteristics. It avoids the high currentsthat are harmful to high-gain mode PCSSs. In the trigger circuit, a 200 pF capacitor is charged by a microsecond-scale 18 kV pulse and thendischarged via the high-gain mode GaAs PCSS to trigger the high-power trigatron switch. When triggered by the ~10 ns pulse generated by thePCSS, the DC-charged trigatron can operate in the 20e35 kV range with 10 ns rise time and 1 ns delay-time jitter.
基金supported by the National Natural Science Foundation of China under Grant No.50577028the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20050487044the China Postdoctoral Science Foundation under Grant No.20080440931
文摘The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.
文摘NPN-type small and medium power switching transistors in 3DK series are used to conduct analyses and studies of accelerating degradation. Through three group studies of accelerating degradation in different temperature-humidity constant stresses, the failure sensitive parameters of transistors are identified and the lifetime of samples is extrapolated from the performance degradation data. Average lifetimes in three common distributions are given, when, combined with the Hallberg-Peck temperature-humidity model, the storage lifetime of transistor samples in the natural storage condition is extrapolated between 105-10^7 h. According to its definition, the accelerating factor is 1462 in 100 ℃/100% relative humidity (RH) stress condition, and 25 ℃/25% RH stress con- dition. Finally, the degradation causes of performance parameters of the test samples are analyzed. The findings can provide certain references for the storage reliability of domestic transistors.