The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current di...The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current displays a clear increase with reaction overpotential (η) and temperature from 278-333 K. In 0.1 mol/L HClO4 the Tafel slopes are found to increases slightly with temperature from 118 mV/dec to 146 mV/dec, while in 0.1 mol/L KOH it is ca. 153±15 mV/dec without clear temperature-dependent trend. The apparent activation energy (Ea) for HER at equilibrium potential is ca. 48 and 34 kJ/mol in 0.1 mol/L HC104 and 0.1 mol/L KOH, respectively. In acid solution, Ea decreases with increase in η, from Ea-37 kJ/mol (η=0.2 V) to 30 kJ/mol (η=0.35 V). In contrast, in 0.1 mol/L KOH, Ea does not show obvious change with U. The pre-exponential factor (A) in 0.1 mol/L HC104 is ca. 1 order higher than that in 0.1 mol/L KOH. Toward more negative potential, in 0.1 mol/L HC104 A changes little with potential, while in 0.1 mol/L KOH it displays a monotonic increase with U. The change trends of the potential-dependent kinetic parameters for HER at Au electrode in 0.1 mol/L HClO4 and that in 0.1 mol/L KOH are discussed.展开更多
基金V, ACKNOWLEDGMENTS This work was supported by one Hundred Talents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.21073176), and 973 Program from the Ministry of Science and Technology of China (No.2010CB923302).
文摘The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current displays a clear increase with reaction overpotential (η) and temperature from 278-333 K. In 0.1 mol/L HClO4 the Tafel slopes are found to increases slightly with temperature from 118 mV/dec to 146 mV/dec, while in 0.1 mol/L KOH it is ca. 153±15 mV/dec without clear temperature-dependent trend. The apparent activation energy (Ea) for HER at equilibrium potential is ca. 48 and 34 kJ/mol in 0.1 mol/L HC104 and 0.1 mol/L KOH, respectively. In acid solution, Ea decreases with increase in η, from Ea-37 kJ/mol (η=0.2 V) to 30 kJ/mol (η=0.35 V). In contrast, in 0.1 mol/L KOH, Ea does not show obvious change with U. The pre-exponential factor (A) in 0.1 mol/L HC104 is ca. 1 order higher than that in 0.1 mol/L KOH. Toward more negative potential, in 0.1 mol/L HC104 A changes little with potential, while in 0.1 mol/L KOH it displays a monotonic increase with U. The change trends of the potential-dependent kinetic parameters for HER at Au electrode in 0.1 mol/L HClO4 and that in 0.1 mol/L KOH are discussed.