Let fn be a non-parametric kernel density estimator based on a kernel function K. and a sequence of independent and identically distributed random variables taking values in R. The goal of this article is to prove mod...Let fn be a non-parametric kernel density estimator based on a kernel function K. and a sequence of independent and identically distributed random variables taking values in R. The goal of this article is to prove moderate deviations and large deviations for the statistic sup |fn(x) - fn(-x) |.展开更多
Let fn be the non-parametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sp...Let fn be the non-parametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere Sd-1. It is proved that if the kernel function is a function with bounded variation and the density function f of the random variables is continuous, then large deviation principle and moderate deviation principle for {sup x∈sd-1 |fn(x) - E(fn(x))|, n ≥ 1} hold.展开更多
基金Research supported by the National Natural Science Foundation of China (10271091)
文摘Let fn be a non-parametric kernel density estimator based on a kernel function K. and a sequence of independent and identically distributed random variables taking values in R. The goal of this article is to prove moderate deviations and large deviations for the statistic sup |fn(x) - fn(-x) |.
基金Supported by National Natural Science Foundation of China (Grant No. 10571139)
文摘Let fn be the non-parametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere Sd-1. It is proved that if the kernel function is a function with bounded variation and the density function f of the random variables is continuous, then large deviation principle and moderate deviation principle for {sup x∈sd-1 |fn(x) - E(fn(x))|, n ≥ 1} hold.