期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intermedin in Paraventricular Nucleus Attenuates Sympathoexcitation and Decreases TLR4-Mediated Sympathetic Activation via Adrenomedullin Receptors in Rats with Obesity-Related Hypertension 被引量:8
1
作者 Jing Sun Xing-Sheng Ren +5 位作者 Ying Kang Hang-Bing Dai Lei Ding Ning Tong Guo-Qing Zhu Ye-Bo Zhou 《Neuroscience Bulletin》 SCIE CAS CSCD 2019年第1期34-46,共13页
Intermedin/adrenomedullin-2(IMD/AM2), a member of the calcitonin gene-related peptide/AM family,plays an important role in protecting the cardiovascular system. However, its role in the enhanced sympathoexcitation in ... Intermedin/adrenomedullin-2(IMD/AM2), a member of the calcitonin gene-related peptide/AM family,plays an important role in protecting the cardiovascular system. However, its role in the enhanced sympathoexcitation in obesity-related hypertension is unknown. In this study, we investigated the effects of IMD in the paraventricular nucleus(PVN) of the hypothalamus on sympathetic nerve activity(SNA), and lipopolysaccharide(LPS)-induced sympathetic activation in obesity-related hypertensive(OH)rats induced by a high-fat diet for 12 weeks. Acute experiments were performed under anesthesia. The dynamic alterations of sympathetic outflow were evaluated as changes in renal SNA and mean arterial pressure(MAP) in response to specific drugs. Male rats were fed a control diet(12% kcal as fat) or a high-fat diet(42% kcal as fat) for 12 weeks to induce OH. The results showed that IMD protein in the PVN was downregulated, but Toll-like receptor 4(TLR4) and plasma norepinephrine(NE, indicating sympathetic hyperactivity) levels, and systolic blood pressure were increased in OH rats. LPS(0.5 lg/50 nL)-induced enhancement of renal SNA and MAP was greater in OH rats than in obese or control rats. Bilateral PVN microinjection of IMD(50 pmol)caused greater decreases in renal SNA and MAP in OH rats than in control rats, and inhibited LPS-induced sympatheticactivation, and these were effectively prevented in OH rats by pretreatment with the AM receptor antagonist AM22-52.The mitogen-activated protein kinase/extracellular signalregulated kinase(ERK) inhibitor U0126 in the PVN partially reversed the LPS-induced enhancement of SNA. However,IMD in the PVN decreased the LPS-induced ERK activation,which was also effectively prevented by AM22-52. Chronic IMD administration resulted in significant reductions in the plasma NE level and blood pressure in OH rats. Moreover,IMD lowered the TLR4 protein expression and ERK activation in the PVN, and decreased the LPS-induced sympathetic overactivity. These results indicate that IMD in the PVN attenuates SNA and hypertension, and decreases the ERK activation implicated in the LPS-induced enhancement of SNA in OH rats, and this is mediated by AM receptors. 展开更多
关键词 INTERMEDIN sympathoexcitation Obesityrelated hypertension PARAVENTRICULAR NUCLEUS TOLL-LIKE receptor 4
原文传递
Chronic Intracerebroventricular Infusion of Metformin Inhibits Salt-Sensitive Hypertension via Attenuation of Oxidative Stress and Neurohormonal Excitation in Rat Paraventricular Nucleus 被引量:5
2
作者 Xiao-Jing Yu Ya-Nan Zhao +13 位作者 Yi-Kang Hou Hong-Bao Li Wen-Jie Xia Hong-Li Gao Kai-Li Liu Qing Su Hui-Yu Yang Bin Liang Wen-Sheng Chen Wei Cui Ying Li Guo-Qing Zhu Zhi-Ming Yang Yu-Ming Kang 《Neuroscience Bulletin》 SCIE CAS CSCD 2019年第1期57-66,共10页
Metformin(MET), an antidiabetic agent, also has antioxidative effects in metabolic-related hypertension.This study was designed to determine whether MET has anti-hypertensive effects in salt-sensitive hypertensive rat... Metformin(MET), an antidiabetic agent, also has antioxidative effects in metabolic-related hypertension.This study was designed to determine whether MET has anti-hypertensive effects in salt-sensitive hypertensive rats by inhibiting oxidative stress in the hypothalamic paraventricular nucleus(PVN). Salt-sensitive rats received a highsalt(HS) diet to induce hypertension, or a normal-salt(NS)diet as control. At the same time, they received intracerebroventricular(ICV) infusion of MET or vehicle for 6 weeks. We found that HS rats had higher oxidative stress levels and mean arterial pressure(MAP) than NS rats. ICV infusion of MET attenuated MAP and reduced plasma norepinephrine levels in HS rats. It also decreased reactive oxygen species and the expression of subunits of NAD(P)H oxidase, improved the superoxide dismutase activity,reduced components of the renin-angiotensin system, and altered neurotransmitters in the PVN. Our findings suggest that central MET administration lowers MAP in saltsensitive hypertension via attenuating oxidative stress,inhibiting the renin-angiotensin system, and restoring the balance between excitatory and inhibitory neurotransmitters in the PVN. 展开更多
关键词 Hypertension PARAVENTRICULAR NUCLEUS sympathoexcitation METFORMIN OXIDATIVE stress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部