The purposes of this article are to discuss the symplectic transformation laws on theta series and to give some explicit formulas for the trace of the symplectic operator.
By using the discrete variational method,we study the numerical method of the general nonholonomic system in the generalized Birkhoffian framework,and construct a numerical method of generalized Birkhoffian equations ...By using the discrete variational method,we study the numerical method of the general nonholonomic system in the generalized Birkhoffian framework,and construct a numerical method of generalized Birkhoffian equations called a self-adjoint-preserving algorithm.Numerical results show that it is reasonable to study the nonholonomic system by the structure-preserving algorithm in the generalized Birkhoffian framework.展开更多
In this paper,we prove that for every symplectic matrix M possessing eigenvalues on the unit circle,there exists a symplectic matrix P such that P<sup>-1</sup> MP is a symplectic matrix of the normal forms...In this paper,we prove that for every symplectic matrix M possessing eigenvalues on the unit circle,there exists a symplectic matrix P such that P<sup>-1</sup> MP is a symplectic matrix of the normal forms defined in this paper.展开更多
By virtue of the new technique of performing integration over Dirac's ket-bra operators, we ex- plore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, ...By virtue of the new technique of performing integration over Dirac's ket-bra operators, we ex- plore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, fractional Fourier transform, Wigner transform, wavelet transform and Fresnel- Hadmard combinatorial transform etc. In this way one may gain benefit for developing classical optics theory from the research in quantum optics, or vice-versa. We cannot only find some new quantum mechanical unitary operators which correspond to the known optical transformations, de- riving a new theorem for calculating quantum tomogram of density operators, but also can reveal some new classical optical transformations. For examples, we find the generalized Fresnel opera- tor (GFO) to correspond to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in the context of quantum optics. Especially, the introduction of quantum mechanical entangled state representations opens up a new area in finding new classical optical transformations. The complex wavelet transform and the condition of mother wavelet are studied in the context of quantum op- tics too. Throughout our discussions, the coherent state, the entangled state representation of the two-mode squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used. All these have confirmed Dirac's assertion: "...for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory".展开更多
文摘The purposes of this article are to discuss the symplectic transformation laws on theta series and to give some explicit formulas for the trace of the symplectic operator.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472124,11572145,11202090,and 11301350)the Doctor Research Start-up Fund of Liaoning Province,China(Grant No.20141050)+1 种基金the China Postdoctoral Science Foundation(Grant No.2014M560203)the General Science and Technology Research Plans of Liaoning Educational Bureau,China(Grant No.L2013005)
文摘By using the discrete variational method,we study the numerical method of the general nonholonomic system in the generalized Birkhoffian framework,and construct a numerical method of generalized Birkhoffian equations called a self-adjoint-preserving algorithm.Numerical results show that it is reasonable to study the nonholonomic system by the structure-preserving algorithm in the generalized Birkhoffian framework.
基金Partially supported by the NSF,MCSEC of China the Qiu Shi Sci.Tech.Foundation
文摘In this paper,we prove that for every symplectic matrix M possessing eigenvalues on the unit circle,there exists a symplectic matrix P such that P<sup>-1</sup> MP is a symplectic matrix of the normal forms defined in this paper.
文摘By virtue of the new technique of performing integration over Dirac's ket-bra operators, we ex- plore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, fractional Fourier transform, Wigner transform, wavelet transform and Fresnel- Hadmard combinatorial transform etc. In this way one may gain benefit for developing classical optics theory from the research in quantum optics, or vice-versa. We cannot only find some new quantum mechanical unitary operators which correspond to the known optical transformations, de- riving a new theorem for calculating quantum tomogram of density operators, but also can reveal some new classical optical transformations. For examples, we find the generalized Fresnel opera- tor (GFO) to correspond to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in the context of quantum optics. Especially, the introduction of quantum mechanical entangled state representations opens up a new area in finding new classical optical transformations. The complex wavelet transform and the condition of mother wavelet are studied in the context of quantum op- tics too. Throughout our discussions, the coherent state, the entangled state representation of the two-mode squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used. All these have confirmed Dirac's assertion: "...for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory".