This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation ...This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation system with SynRG can achieve smooth start at low wind velocity. The rotor design of proposed SynRG is multi flux barrier type. With FEA (finite element analysis) software, the characteristics of SynRG are brought out, and the performance of wind turbine generation system with SynRG including copper loss and iron loss is simulated by FEA coupled with the motion equation of the wind turbine generation system under the maximum power point tracking control. In this paper, the constant wind test and the quasi-natural wind test are conducted. In conclusion, the results of these simulations indicate that the wind turbine generation system with SynRG has good performance, especially in starting phenomena.展开更多
文摘This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation system with SynRG can achieve smooth start at low wind velocity. The rotor design of proposed SynRG is multi flux barrier type. With FEA (finite element analysis) software, the characteristics of SynRG are brought out, and the performance of wind turbine generation system with SynRG including copper loss and iron loss is simulated by FEA coupled with the motion equation of the wind turbine generation system under the maximum power point tracking control. In this paper, the constant wind test and the quasi-natural wind test are conducted. In conclusion, the results of these simulations indicate that the wind turbine generation system with SynRG has good performance, especially in starting phenomena.