<em>Objective:</em> To establish a practical method for discriminating dementia groups and healthy elderlies, by using scalp-recorded electroencephalograms (EEGs). <em>Methods:</em> 16-ch EEGs ...<em>Objective:</em> To establish a practical method for discriminating dementia groups and healthy elderlies, by using scalp-recorded electroencephalograms (EEGs). <em>Methods:</em> 16-ch EEGs were recorded during resting state for 39 dementia groups and 11 healthy elderlies. The connectivity between any two electrodes was estimated by synchronization likelihood (SL). The brain networks were constructed by normalized SL values. The present leave-one-out cross validation (LOOCV) required the Euclidean distance between any two subjects having 120-dimensional vectors concerned with the SL values for six frequency bands. In order to investigate factors which would affect the LOOCV results, principal component analysis (PCA) was applied to all the subjects. <em>Results:</em> The accuracy for the upper alpha yielded more than 80% and 70% in the dementia groups and the healthy elderlies, respectively. The LOOCV result could be explained in terms of brain networks such as executive control network (ECN) and default mode network (DMN) characterized by factor loadings of principal components. <em>Conclusions:</em> Dementia groups and healthy elderlies could be characterized by principal components of SL values between all the electrode pairs, even less connections, which revealed disruption and preservation of DMN and ECN. <em>Significance:</em> This study will provide a simple and practical method for discriminating dementia groups from healthy elderlies by scalp-recorded EEGs.展开更多
Traditional frame synchronization methods for underwater acoustic communication(UWAC) merely depend on correlation coefficient when synchronization signal detection is concerned and,hence,false triggering and missed s...Traditional frame synchronization methods for underwater acoustic communication(UWAC) merely depend on correlation coefficient when synchronization signal detection is concerned and,hence,false triggering and missed synchronization can hardly be avoided in complex UWAC channels.In order to solve this problem,firstly,we analyze the effects of interference from noise,multipath and Doppler on frame synchronization;then we propose a new frame synchronization scheme based on parameter estimation.By exploiting the parameter estimation technique,we detect the synchronization signal according to the estimated parameters,thus the false triggering rate and missed synchronization rate can be reduced.We also simplify the maximum likelihood estimation to reduce computational cost.Simulation results indicate that this new scheme outperforms the traditional method in terms of delay resolution and correlation coefficient.Both static and mobile communication experimental results show that the correlation coefficient of the new scheme is higher than that of the traditional one.Moreover,the detection ability of the receiver is improved,which helps to avoid false triggering and missed synchronization.展开更多
文摘<em>Objective:</em> To establish a practical method for discriminating dementia groups and healthy elderlies, by using scalp-recorded electroencephalograms (EEGs). <em>Methods:</em> 16-ch EEGs were recorded during resting state for 39 dementia groups and 11 healthy elderlies. The connectivity between any two electrodes was estimated by synchronization likelihood (SL). The brain networks were constructed by normalized SL values. The present leave-one-out cross validation (LOOCV) required the Euclidean distance between any two subjects having 120-dimensional vectors concerned with the SL values for six frequency bands. In order to investigate factors which would affect the LOOCV results, principal component analysis (PCA) was applied to all the subjects. <em>Results:</em> The accuracy for the upper alpha yielded more than 80% and 70% in the dementia groups and the healthy elderlies, respectively. The LOOCV result could be explained in terms of brain networks such as executive control network (ECN) and default mode network (DMN) characterized by factor loadings of principal components. <em>Conclusions:</em> Dementia groups and healthy elderlies could be characterized by principal components of SL values between all the electrode pairs, even less connections, which revealed disruption and preservation of DMN and ECN. <em>Significance:</em> This study will provide a simple and practical method for discriminating dementia groups from healthy elderlies by scalp-recorded EEGs.
基金supported by the National Natural Science Foundation of China(61431020)
文摘Traditional frame synchronization methods for underwater acoustic communication(UWAC) merely depend on correlation coefficient when synchronization signal detection is concerned and,hence,false triggering and missed synchronization can hardly be avoided in complex UWAC channels.In order to solve this problem,firstly,we analyze the effects of interference from noise,multipath and Doppler on frame synchronization;then we propose a new frame synchronization scheme based on parameter estimation.By exploiting the parameter estimation technique,we detect the synchronization signal according to the estimated parameters,thus the false triggering rate and missed synchronization rate can be reduced.We also simplify the maximum likelihood estimation to reduce computational cost.Simulation results indicate that this new scheme outperforms the traditional method in terms of delay resolution and correlation coefficient.Both static and mobile communication experimental results show that the correlation coefficient of the new scheme is higher than that of the traditional one.Moreover,the detection ability of the receiver is improved,which helps to avoid false triggering and missed synchronization.