The hydraulic control mode of the synchronous system in Chinese-built 300 MN dieforming hydraulic press was analysed comprehensively.To improve the deficiency of the existing system,a series investigations were put fo...The hydraulic control mode of the synchronous system in Chinese-built 300 MN dieforming hydraulic press was analysed comprehensively.To improve the deficiency of the existing system,a series investigations were put forward,such as the controlling of inclination angular-velocity,the pre-estimating of compensation,the synchronous cylinder's pressure signal protection,ratio pressure control and changing flow control etc,to increase the system's control accuracy and reliability greatly.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
The k-set agreement problem is a generalization of the consensus problem: considering a system made up of n processes where each process proposes a value, each non-faulty process has to decide a value such that a dec...The k-set agreement problem is a generalization of the consensus problem: considering a system made up of n processes where each process proposes a value, each non-faulty process has to decide a value such that a decided value is a proposed value, and no more than k different values are decided. While this problem cannot be solved in an asynchronous system prone to t process crashes when t≥ k, it can always be solved in a synchronous system; [t/k]+1 is then a lower bound on the number of rounds (consecutive communication steps) for the non-faulty processes to decide. The condition-based approach has been introduced in the consensus context. Its aim was to both circumvent the consensus impossibility in asynchronous systems, and allow for more efficient consensus algorithms in synchronous systems. This paper addresses the condition-based approach in the context of the k-set agreement problem. It has two main contributions. The first is the definition of a framework that allows defining conditions suited to the l-set agreement problem and the second is a generic synchronous k-set agreement algorithm based on conditions.展开更多
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p...Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.展开更多
A spectrum efficient OFDM scheme named Time Domain Synchronous-OFDM(TDS-OFDM)is introduced into coherent optical transmission system,in which the pseudo noise(PN)sequence is exploited as guard interval to realize fram...A spectrum efficient OFDM scheme named Time Domain Synchronous-OFDM(TDS-OFDM)is introduced into coherent optical transmission system,in which the pseudo noise(PN)sequence is exploited as guard interval to realize frame synchronization,compensate the carrier frequency offset(CFO),and estimate and equalize channel simultaneously.Since there is no pilot signals or training symbols in TDS-OFDM,the proposed scheme can achieve higher spectral efficiency(SE)above 10%improvement comparing with CPOFDM.The proposed method is implemented and verified in a 28GBaud QPSK OFDM system and a 28GBaud 16QAM OFDM system.It is demonstrated that the proposed scheme shows high CFO estimation accuracy and synchronous accuracy.Under CFO and linewidth of laser source set as 100MHz and 100kHz respectively,BER of QPSK OFDM system is below 3.8e-3 at the optical signal-to-noise ratio(OSNR)of 13dB,and BER of 16QAM OFDM system is below 3.8e-3 at the OSNR of 20dB.展开更多
A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless s...A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.展开更多
Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchro...Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchronous driving scheme based on semi-closed-loop cross- coupling integrated feedforward control is proposed. The scheme comprises a position error cross-coupling feedfor-ward control and a load torque identification with feed- forward control. A digital integrated simulation system for the dual servo synchronous drive system is established. Using a 20 t servo broacher, performance analysis of the scheme is conducted based on this simulation system and the simulation results show that systems with traditional parallel or single control have problems when the work- table works with an unbalanced load. However, the system with proposed scheme shows good synchronous perfor- mance and positional accuracy. Broaching tests are performed and the experimental results show that the maximum dual axis synchronization error of the system is only 8μm during acceleration and deceleration processes and the error between the actual running position and the given position is almost zero. A double position servo synchronous driving scheme is presented based on crosscoupled integrated feedforward compensation control, which can improve the synchronization precision.展开更多
The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of ...The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.展开更多
Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key techno...Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key technologies for synchronous cooperative design in networked manufacturing platform,such as the cooperative mechanism,cooperative rules,control authority conveyed,cooperative efficiency,are detailed,with which a synchronous cooperative design system is developed.Due to the cooper- ative efficiency is the major bottleneck of the synchronous cooperative design over Internet,this research details the test and experi- ment to demonstrate the practicality of the system.Finally the advantages of the system are illustrated compared with current soft- ware tools.展开更多
BACKGROUND Brain metastasis(BM)from colorectal cancer(CRC)is rarely encountered clinically,and its prognosis has not been fully evaluated.AIM To construct a scoring system and accurately predict the survival of patien...BACKGROUND Brain metastasis(BM)from colorectal cancer(CRC)is rarely encountered clinically,and its prognosis has not been fully evaluated.AIM To construct a scoring system and accurately predict the survival of patients with synchronous BM at diagnosis of CRC.METHODS A retrospective study of 371 patients with synchronous BM from CRC was performed,using the data from 2010 to 2014 from the Surveillance,Epidemiology,and End Results database.Survival time and prognostic factors were statistically analyzed by the Kaplan-Meier method and Cox proportional hazards models,respectively.A scoring system was developed using the independent prognostic factors,and was used to measure the survival difference among different patients.RESULTS For the 371 patients,the median overall survival was 5 mo,survival rates were 27%at 1 year and 11.2%at 2 years.Prognostic analysis showed that age,carcinoembryonic antigen level and extracranial metastasis to the liver,lung or bone were independent prognostic factors.A scoring system based on these three prognostic factors classified the patients into three prognostic subgroups(scores of 0-1,2-3,and 4).The median survival of patients with scores of 0-1,2-3 and 4 was 14,5 and 2 mo,respectively(P<0.001).Subgroup analysis showed that there were significant differences in prognosis among the groups.Score 2-3 vs 0-1:hazard ratio(HR)=2.050,95%CI:1.363-3.083;P=0.001;score 4 vs 0-1:HR=3.721,95%CI:2.225-6.225;P<0.001;score 2-3 vs 4:HR=0.551,95%CI:0.374-0.812;P=0.003.CONCLUSION The scoring system effectively distinguishes long-term and short-term survivors with synchronous BM from CRC.These results are helpful in providing a reference for guiding therapy.展开更多
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make oper...This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.展开更多
Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage...Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.展开更多
Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were st...Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.展开更多
This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy o...This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy of recovering the connectivity of network topology among normal agents based on multi-hop communication and a fault-tolerant finitetime dynamical consensus protocol with time-varying gains are proposed to resist synchronous SSFF.It is proved that double-integrator MASs with partial agents subject to synchronous SSFF using the proposed strategy of network topology connectivity recovery and fault-tolerant finite-time dynamical consensus protocol with the proper time-varying gains can achieve finite-time dynamical consensus.Numerical simulations are given to illustrate the effectiveness of the theoretical results.展开更多
Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conv...Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conventional AC DC AC converter to increase the power factor (PF) of the system input side. MPTC is used to select optimal voltage space vector to enable the system to have satisfactory torque and flux control effect. The resultant MPTC strategy not only makes the MC fed PMSM system operate reliably and have perfect control performance, but also makes the PF of the system input side be 1. Compared with direct torque control (DTC), the proposed MPTC strategy guarantees that MC fed PMSM has better command following characteristics in the presence of variation of load torque and tracking reference speed. Simulation results verify the feasibility and effectiveness of the proposed strategy.展开更多
As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the...As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the generator transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the generator transient stability in the power system with significant PV penetration is assessed by a numerical simulation. In order to assess the impact from various angles, simulation parameters such as levels of PV penetration, variety of power sources (inverter or rotational machine), and existence of LVRT capability are considered. The simulation is performed by using PSCAD/EMTDC software.展开更多
In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is propo...In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is proposed in this paper.Traditional voltage control method is hard to achieve the dynamic performance requirements of the HVDC generation system under a wide speed range,so the nonlinear PI parameter adjustment,load current feedback and speed feedback are added to the voltage and excitation current double loop control.The transfer function of the HVDC generation system is derived,and the relationship between speed,load current and PI parameters is obtained.The PI parameters corresponding to the load at certain speed are used to shorten the adjusting time when the load suddenly changes.The dynamic responses in transient processes are analyzed by experiment.The results illustrate that the WRSM HVDC generator system with this method has better dynamic performance.展开更多
Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind...Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.展开更多
With the increase of bridge reconstruction schemes, synchronous lifting of a bridge is more and more widely used. In order to solve the problems associated with the synchronoas lifting of a bridge, a multi-cylinder sy...With the increase of bridge reconstruction schemes, synchronous lifting of a bridge is more and more widely used. In order to solve the problems associated with the synchronoas lifting of a bridge, a multi-cylinder synchronous lifting power and monitoring system has been developed. This is a distributed control system, which is com- posed of an industrial computer workstation, a programmable logical controller and a hydraulic control system. The system can achieve distributed control and centralized operation of actuators, and centralized management of infor- mation. It not only can implement multi-cylinder synchronous lifting with an unbalanced load, but also can moni- tor the pressure, displacement and stress at each lifting point. The performance of the multi-cylinder synchronous system is verified through its application to several bridge lifting engineering projects. The details of such a project are given.展开更多
This paper develops a new mathematical model of electrical power system,in which the transient saliency effect of synchronous machine is taken into account.Thecomputation results show that the new model has higher pre...This paper develops a new mathematical model of electrical power system,in which the transient saliency effect of synchronous machine is taken into account.Thecomputation results show that the new model has higher precision and less computationlabor.So it is suitable for the analysis and controller design of transient power system.展开更多
文摘The hydraulic control mode of the synchronous system in Chinese-built 300 MN dieforming hydraulic press was analysed comprehensively.To improve the deficiency of the existing system,a series investigations were put forward,such as the controlling of inclination angular-velocity,the pre-estimating of compensation,the synchronous cylinder's pressure signal protection,ratio pressure control and changing flow control etc,to increase the system's control accuracy and reliability greatly.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金supported by the European Network of Excellence ReSIST.
文摘The k-set agreement problem is a generalization of the consensus problem: considering a system made up of n processes where each process proposes a value, each non-faulty process has to decide a value such that a decided value is a proposed value, and no more than k different values are decided. While this problem cannot be solved in an asynchronous system prone to t process crashes when t≥ k, it can always be solved in a synchronous system; [t/k]+1 is then a lower bound on the number of rounds (consecutive communication steps) for the non-faulty processes to decide. The condition-based approach has been introduced in the consensus context. Its aim was to both circumvent the consensus impossibility in asynchronous systems, and allow for more efficient consensus algorithms in synchronous systems. This paper addresses the condition-based approach in the context of the k-set agreement problem. It has two main contributions. The first is the definition of a framework that allows defining conditions suited to the l-set agreement problem and the second is a generic synchronous k-set agreement algorithm based on conditions.
基金supported in part by the National Natural Science Foundation of China(51875261)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX21_3331)+1 种基金the Faculty of Agricultural Equipment of Jiangsu University(NZXB20210103)。
文摘Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.
基金supported by the State Grid Corporation of China (No. 5101/2017-3205A)the Open Fund of the Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications (Jinan University)the National Natural Science Foundation of China (NSFC) (61571057, 61501214, 61527820, 61575082)
文摘A spectrum efficient OFDM scheme named Time Domain Synchronous-OFDM(TDS-OFDM)is introduced into coherent optical transmission system,in which the pseudo noise(PN)sequence is exploited as guard interval to realize frame synchronization,compensate the carrier frequency offset(CFO),and estimate and equalize channel simultaneously.Since there is no pilot signals or training symbols in TDS-OFDM,the proposed scheme can achieve higher spectral efficiency(SE)above 10%improvement comparing with CPOFDM.The proposed method is implemented and verified in a 28GBaud QPSK OFDM system and a 28GBaud 16QAM OFDM system.It is demonstrated that the proposed scheme shows high CFO estimation accuracy and synchronous accuracy.Under CFO and linewidth of laser source set as 100MHz and 100kHz respectively,BER of QPSK OFDM system is below 3.8e-3 at the optical signal-to-noise ratio(OSNR)of 13dB,and BER of 16QAM OFDM system is below 3.8e-3 at the OSNR of 20dB.
基金Project (No. 50607016) supported by the National Natural ScienceFoundation of China
文摘A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.
基金Supported by National Natural Science Foundation of China(Grant No.51307151)Zhejiang Provincial Public Welfare Technology Application Research Project of China(Grant No.2015C31078)+2 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LY14E070008)Zhejiang Postdoctoral Science Foundation of China(Grant No.BSH1402065)Science Foundation of Zhejiang SciTech University(Grant No.13022151-Y)
文摘Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchronous driving scheme based on semi-closed-loop cross- coupling integrated feedforward control is proposed. The scheme comprises a position error cross-coupling feedfor-ward control and a load torque identification with feed- forward control. A digital integrated simulation system for the dual servo synchronous drive system is established. Using a 20 t servo broacher, performance analysis of the scheme is conducted based on this simulation system and the simulation results show that systems with traditional parallel or single control have problems when the work- table works with an unbalanced load. However, the system with proposed scheme shows good synchronous perfor- mance and positional accuracy. Broaching tests are performed and the experimental results show that the maximum dual axis synchronization error of the system is only 8μm during acceleration and deceleration processes and the error between the actual running position and the given position is almost zero. A double position servo synchronous driving scheme is presented based on crosscoupled integrated feedforward compensation control, which can improve the synchronization precision.
基金supported in part by the National Natural Science Foundation of China under Grant 51537007。
文摘The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.
基金Funded by the Natural Science Foundation of Hubei province(2005ABB023)Wuhan city dawn plan(20055003059)
文摘Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key technologies for synchronous cooperative design in networked manufacturing platform,such as the cooperative mechanism,cooperative rules,control authority conveyed,cooperative efficiency,are detailed,with which a synchronous cooperative design system is developed.Due to the cooper- ative efficiency is the major bottleneck of the synchronous cooperative design over Internet,this research details the test and experi- ment to demonstrate the practicality of the system.Finally the advantages of the system are illustrated compared with current soft- ware tools.
基金Supported by National Key Research and Development Program of the Ministry of Science and Technology of China,No.2016YFC0905303,2016YFC0905300Beijing Science and Technology Program,No.D171100002617004
文摘BACKGROUND Brain metastasis(BM)from colorectal cancer(CRC)is rarely encountered clinically,and its prognosis has not been fully evaluated.AIM To construct a scoring system and accurately predict the survival of patients with synchronous BM at diagnosis of CRC.METHODS A retrospective study of 371 patients with synchronous BM from CRC was performed,using the data from 2010 to 2014 from the Surveillance,Epidemiology,and End Results database.Survival time and prognostic factors were statistically analyzed by the Kaplan-Meier method and Cox proportional hazards models,respectively.A scoring system was developed using the independent prognostic factors,and was used to measure the survival difference among different patients.RESULTS For the 371 patients,the median overall survival was 5 mo,survival rates were 27%at 1 year and 11.2%at 2 years.Prognostic analysis showed that age,carcinoembryonic antigen level and extracranial metastasis to the liver,lung or bone were independent prognostic factors.A scoring system based on these three prognostic factors classified the patients into three prognostic subgroups(scores of 0-1,2-3,and 4).The median survival of patients with scores of 0-1,2-3 and 4 was 14,5 and 2 mo,respectively(P<0.001).Subgroup analysis showed that there were significant differences in prognosis among the groups.Score 2-3 vs 0-1:hazard ratio(HR)=2.050,95%CI:1.363-3.083;P=0.001;score 4 vs 0-1:HR=3.721,95%CI:2.225-6.225;P<0.001;score 2-3 vs 4:HR=0.551,95%CI:0.374-0.812;P=0.003.CONCLUSION The scoring system effectively distinguishes long-term and short-term survivors with synchronous BM from CRC.These results are helpful in providing a reference for guiding therapy.
基金Project supported by the CMEP-TASSILI Project(Grant No.14MDU920)
文摘This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.
基金supported by National Natural Science Foundation of China Key program(51937003)。
文摘Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.
基金Project supported by the National Natural Science Foundation of China (No. 60374013) and the Natural Science Foundation of Zhejiang Province (No. M603217), China
文摘Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.
基金Project supported by the National Natural Science Foundation of China(Grant No.61876073)the Fundamental Research Funds for the Central Universities of China(Grant No.JUSRP21920)
文摘This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy of recovering the connectivity of network topology among normal agents based on multi-hop communication and a fault-tolerant finitetime dynamical consensus protocol with time-varying gains are proposed to resist synchronous SSFF.It is proved that double-integrator MASs with partial agents subject to synchronous SSFF using the proposed strategy of network topology connectivity recovery and fault-tolerant finite-time dynamical consensus protocol with the proper time-varying gains can achieve finite-time dynamical consensus.Numerical simulations are given to illustrate the effectiveness of the theoretical results.
基金National Natural Science Foundation of China(No.61463025)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conventional AC DC AC converter to increase the power factor (PF) of the system input side. MPTC is used to select optimal voltage space vector to enable the system to have satisfactory torque and flux control effect. The resultant MPTC strategy not only makes the MC fed PMSM system operate reliably and have perfect control performance, but also makes the PF of the system input side be 1. Compared with direct torque control (DTC), the proposed MPTC strategy guarantees that MC fed PMSM has better command following characteristics in the presence of variation of load torque and tracking reference speed. Simulation results verify the feasibility and effectiveness of the proposed strategy.
文摘As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the generator transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the generator transient stability in the power system with significant PV penetration is assessed by a numerical simulation. In order to assess the impact from various angles, simulation parameters such as levels of PV penetration, variety of power sources (inverter or rotational machine), and existence of LVRT capability are considered. The simulation is performed by using PSCAD/EMTDC software.
基金supported by funded by"Ye Qisun"Joint Foundation Project supported by the State Key Program of National Natural Science Foundation of China under Award U2141223.
文摘In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is proposed in this paper.Traditional voltage control method is hard to achieve the dynamic performance requirements of the HVDC generation system under a wide speed range,so the nonlinear PI parameter adjustment,load current feedback and speed feedback are added to the voltage and excitation current double loop control.The transfer function of the HVDC generation system is derived,and the relationship between speed,load current and PI parameters is obtained.The PI parameters corresponding to the load at certain speed are used to shorten the adjusting time when the load suddenly changes.The dynamic responses in transient processes are analyzed by experiment.The results illustrate that the WRSM HVDC generator system with this method has better dynamic performance.
基金supported by the National Natural Science Foundation of China (51907129)Project Supported by Department of Science and Technology of Liaoning Province (2021-MS-236)。
文摘Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.
基金supported by the Ph.D. Programs Foundation of Ministry of Education of China under Grant No. 20070056010Tianjin Municipal Natural Science Foundation under Grant No.07JCZBJC09900Tianjin key technology research for majorproject under Contract No.05ZHGCGX00500
文摘With the increase of bridge reconstruction schemes, synchronous lifting of a bridge is more and more widely used. In order to solve the problems associated with the synchronoas lifting of a bridge, a multi-cylinder synchronous lifting power and monitoring system has been developed. This is a distributed control system, which is com- posed of an industrial computer workstation, a programmable logical controller and a hydraulic control system. The system can achieve distributed control and centralized operation of actuators, and centralized management of infor- mation. It not only can implement multi-cylinder synchronous lifting with an unbalanced load, but also can moni- tor the pressure, displacement and stress at each lifting point. The performance of the multi-cylinder synchronous system is verified through its application to several bridge lifting engineering projects. The details of such a project are given.
文摘This paper develops a new mathematical model of electrical power system,in which the transient saliency effect of synchronous machine is taken into account.Thecomputation results show that the new model has higher precision and less computationlabor.So it is suitable for the analysis and controller design of transient power system.