A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity er...A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity errors of PSD and a multilayer feedforward neural network based on error back-propagation algorithm was used to compensate errors. With the aid of computer-based data acquisition system, an automatic dynamic measuring process was realized. A series of experiments, including comparison tests with laser interferometer, were done to evaluate the performance of the measuring system. The experimental results show that the spatial straightness errors of guide rails can be measured with high accuracy. The maximum differences between the device and laser interferometer are 0.027 mm in Y direction, and 0.053 mm in X direction in the measuring distance of 6 m.展开更多
An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle...An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle measurement. A reflecting mirror is introduced for increasing the measurement resolution. In experiments, a deflection angle of a measured target was measured within ~3° with high accuracy. And as a phase modulating interferometer, it was used to measure a small angular displacement with a repeatability of 5.5 × 10^-8 rad.展开更多
A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-ge...A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.展开更多
In the 3rd generation synchrotron light source,beside the orbit,air disturbance and ground vibration also could affect the position stability of photon beam in synchrotrons radiation measurement.In the condition of im...In the 3rd generation synchrotron light source,beside the orbit,air disturbance and ground vibration also could affect the position stability of photon beam in synchrotrons radiation measurement.In the condition of implementation of orbit feedback system at SSRF,the measured position stability of photon beam in synchrotrons radiation measurement station was presented in this paper.And then the improvement methods of position stability of photon beam were discussed.Finally the measured result was shown when the designed feedback system is implemented to improve the position stability of photon beam.展开更多
文摘A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity errors of PSD and a multilayer feedforward neural network based on error back-propagation algorithm was used to compensate errors. With the aid of computer-based data acquisition system, an automatic dynamic measuring process was realized. A series of experiments, including comparison tests with laser interferometer, were done to evaluate the performance of the measuring system. The experimental results show that the spatial straightness errors of guide rails can be measured with high accuracy. The maximum differences between the device and laser interferometer are 0.027 mm in Y direction, and 0.053 mm in X direction in the measuring distance of 6 m.
基金This work was supported by the National Natural Science Foundation of China under Grant No.60578051.
文摘An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle measurement. A reflecting mirror is introduced for increasing the measurement resolution. In experiments, a deflection angle of a measured target was measured within ~3° with high accuracy. And as a phase modulating interferometer, it was used to measure a small angular displacement with a repeatability of 5.5 × 10^-8 rad.
基金supported by the National Natural Science Foundation of China(Nos.11605248,11605249,11605267,and 11805032.)
文摘A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.
基金Supported by Shanghai Synchrotron Radiation Facility project
文摘In the 3rd generation synchrotron light source,beside the orbit,air disturbance and ground vibration also could affect the position stability of photon beam in synchrotrons radiation measurement.In the condition of implementation of orbit feedback system at SSRF,the measured position stability of photon beam in synchrotrons radiation measurement station was presented in this paper.And then the improvement methods of position stability of photon beam were discussed.Finally the measured result was shown when the designed feedback system is implemented to improve the position stability of photon beam.