期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Field synergy analysis of pollutant dispersion in street canyons and its optimization by adding wind catchers 被引量:2
1
作者 Tingzhen Ming Huina Han +4 位作者 Zhen Zhao Renaud de Richter Yongjia Wu Wei Li Nyuk Hien Wong 《Building Simulation》 SCIE EI CSCD 2021年第2期391-405,共15页
The microenvironment,which involves pollutant dispersion of the urban street canyon,is critical to the health of pedestrians and residents.The objectives of this work are twofold:(i)to effectively assess the pollutant... The microenvironment,which involves pollutant dispersion of the urban street canyon,is critical to the health of pedestrians and residents.The objectives of this work are twofold:(i)to effectively assess the pollutant dispersion process based on a theory and(ii)to adopt an appropriate stratigy,i.e.,wind catcher,to alleviate the pollution in the street canyons.Pollutant dispersion in street canyons is essentially a convective mass transfer process.Because the convective heat transfer process and the mass transfer process are physically similar and the applicability of field synergy theory to turbulence has been verified in the literature,we apply the field synergy theory to the study of pollutant dispersion in street canyons.In this paper,a computational fluid dynamics(CFD)simulation is conducted to investigate the effects of wind catcher,wind speed and the geometry of the street canyons on pollutant dispersion.According to the field synergy theory,Sherwood number and field synergy number are used to quantitatively evaluate the wind catcher and wind speed on the diffusion of pollutants in asymmetric street canyons.The results show that adding wind catchers can significantly improve the air quality of the step-down street canyon and reduce the average pollutant concentrations in the street canyon by 75%.Higher wind speed enhances diffusion of pollutants differently in different geometric street canyons. 展开更多
关键词 street canyon field synergy theory CFD simulation pollutant dispersion wind catcher
原文传递
A novel porous channel to optimize the cooling performance of PV modules
2
作者 Yingbo Zhang Chao Shen +3 位作者 Chunxiao Zhang Jihong Pu Qianru Yang Cheng Sun 《Energy and Built Environment》 2022年第2期210-225,共16页
This paper dealt with a series of numerical investigations on a new porous cooling channel applied to PV/T systems in order to improve the insufficient heat transfer in the conventional channel.The proposed porous coo... This paper dealt with a series of numerical investigations on a new porous cooling channel applied to PV/T systems in order to improve the insufficient heat transfer in the conventional channel.The proposed porous cooling channel based on field synergy theory had a higher overall heat transfer coefficient,which enhanced the total efficiency of the PV/T system.The numerical model was validated with experimental data.The results showed that holes distributed non-uniformly near the outlet of the cooling water led to a better cooling effect,and a hole diameter of 0.005 m led to an optimal performance.The total efficiency of the PV module with the new cooling channel was 4.17%higher than the conventional one at a solar irradiance of 1000 W/m^(2)and an inlet mass flow rate of 0.006 kg/s.In addition,as the solar irradiance increased from 300 to 1200 W/m^(2),the total efficiency of the new PV/T system dropped by 5.07%,which included reductions in both the electrical and thermal efficiency.The total efficiency was improved by 18.04%as the inlet mass flow rate of cooling water increased from 0.002 to 0.02 kg/s. 展开更多
关键词 PV modules Heat regulation Field synergy theory PV cell temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部