Based on the observed and NCEP reanalysis data from 1985 to 2006, the climate background and synoptic situation of fog at Great Wall Station were analyzed.It is shown that the seasonal variation of fog is controlled b...Based on the observed and NCEP reanalysis data from 1985 to 2006, the climate background and synoptic situation of fog at Great Wall Station were analyzed.It is shown that the seasonal variation of fog is controlled by the change of general circulation and local pressure field.Three favorable typical synoptic situations for fog development arc found,the Front-of-A-Depression type,the Saddle-Shaped-Field type and the Passing-Weak-Cyclone type.The first one is the most important situation.Advection cooling fog is dominant at Great Wall Station,but there are other kinds of fog as well.As a result,some helpful principles for local fog forecasting are given.展开更多
The occurrence of the red tide is an extremely complex process, which is considered as the comprehensive result of various factors. The Yangtze River estuary water area is always in high incidence area of red tide. In...The occurrence of the red tide is an extremely complex process, which is considered as the comprehensive result of various factors. The Yangtze River estuary water area is always in high incidence area of red tide. In this paper, according to the events of red tide and meteorologic and hydrologic data in Yangtze River estuary water area from 2000 to 2010, by using mathematical statistics methods, we analyze the relevance between the occurrence of the red tide and the synoptic situation field, and probe into the regular patterns.展开更多
Organized warm-sector rainfall(OWSR)near the coast of South China tends to occur in certain synoptic situations characterized with either a low-level jet or an anticyclone,with the latter being less investigated.This ...Organized warm-sector rainfall(OWSR)near the coast of South China tends to occur in certain synoptic situations characterized with either a low-level jet or an anticyclone,with the latter being less investigated.This paper fills the gap by analyzing 15 OWSR events that occurred in an anticyclone synoptic situation during the pre-summer rainy season of 2011-2016,based on high-resolution observational and reanalysis data.The results show that the anticyclone synoptic situation produces marked northerly boundary-layer winds inland and obvious northeasterly,easterly/southwesterly,and southeasterly boundary-layer winds near the coasts of eastern Guangdong,western Guangdong,and Guangxi,respectively.The coastal boundary-layer winds promote favorable environmental conditions and strong convergence for convection initiation;consequently,OWSR is prone to occur near the coasts of western Guangdong and Guangxi,but exhibits different formation and propagation features in the following two subareas.(1)The southeasterly boundary-layer winds tend to converge near the border area between Guangxi and Guangdong(BGG),promoting the formation of a stable convective line along the mountains.The convective line persists with support of upper-level southwesterly winds that facilitate convective cells to propagate along the convective line,producing heavy OWSR along the mountains near BGG.(2)In contrast,a west-east convective line tends to form and maintain near the coast of Yangjiang(YJ)area,about 200 km east of BGG,owing to stable convergence between the easterly(or southwesterly)and the northerly boundary-layer winds reinforced by the mountains near YJ.Moreover,the coupling of upper-level westerly winds with the easterly(southwesterly)boundary-layer winds facilitates expansion(eastward propagation)of the convective line,causing west-east-oriented heavy OWSR near the coast of YJ.In a word,this study reveals refined properties of OWSR initiation and development in the anticyclone synoptic situation,which may help improve the forecast skill of OWSR during the pre-summer rainy season in South China.展开更多
Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of av...Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of average ion deposition rate in spring at the air/water interface, of all anions, that of so4^2- was the largest followed by YO3^-, whereas among all cations, Ca^2+ concentration and the rate was the largest, and then NH4^+ was the next. The correlation of ion concentration indicated that the catchment of the lake has been artificially polluted considerably. Using backward trajectory analysis, the raining water in the stations in Taihu Lake was classified. In spring, marine-originated rain is the main contribution to this area, counting for 92.7% of the total precipitation, in which so4^2-, NO3^- and NH4^+ contributed 89.2%, 88.1%, and 88.3% respectively to the total spring-rain chemicals, whereas land-originated rains contributed in a small amount. However, the ion concentration in the land-originated rain was higher and acidic, causing considerable harm to local ecosystem. The analysis of backward trajectory analysis shows that three types of air masses influenced the chemical composition of the lake water, namely, air mass from NE direction, air mass from SW direction, and local air mass. Although the local air masses often produced small rainfall amount, but the nature of high ion concentration and high acidity impacted the local ecosystem remarkably. The ion concentration and rainfall from long-distance boreal air mass are clearly greater than those in austral air.展开更多
The purpose of this study is to determine the size of air temperature changes with altitude in the mountains of the arid zone, on the example of the Upper Dades valley(High Atlas, Morocco). The air temperature change ...The purpose of this study is to determine the size of air temperature changes with altitude in the mountains of the arid zone, on the example of the Upper Dades valley(High Atlas, Morocco). The air temperature change with altitude was determined on the basis of 5 years data from three meteorological stations. The analysis was carried out on an annual and seasonal basis. The annual and daily variations of thermal gradients between pairs of stations were also determined. It was found that the average thermal gradient in the Upper Dades valley was-1.02℃ per 100 m. The highest values of the thermal gradient occur in winter and the lowest in summer. In winter,the thermal gradient was characterized by the greatest variability. Minima of the daily variation of air temperature gradients were observed in early morning hours and maxima around midday. In the lower part of the valley, air temperature inversion frequently developed between 10 AM and 3 PM UTC.The obtained results show high thermal gradients in the mountains of the arid zone, with their annual amplitude increasing in the lower parts of the valley.The instantaneous values of the gradients were significantly modified by the supply of latent heat and the occurrence of dust storms. It has been shown that the advection factor plays an important role in shaping large gradient values. The study contains novel results of thermal gradient measurements in high mountains of arid zone.展开更多
Lanzhou Zhongchuan International Airport[International Civil Aviation Organization(ICAO)code ZLLL]is located in a wind shear prone area in China,where most low-level wind shear events occur in dry weather conditions.W...Lanzhou Zhongchuan International Airport[International Civil Aviation Organization(ICAO)code ZLLL]is located in a wind shear prone area in China,where most low-level wind shear events occur in dry weather conditions.We analyzed temporal distribution and synoptic circulation background for 18 dry wind shear events reported by pilots at ZLLL by using the NCEP final(FNL)operational global analysis data,and then proposed a lidar-based regional divergence algorithm(RDA)to determine wind shear intensity and location.Low-level wind shear at ZLLL usually occurs in the afternoon and evening in dry conditions.Most wind shear events occur in an unstable atmosphere over ZLLL,with changes in wind speed or direction generally found at 700 hPa and 10-m height.Based on synoptic circulations at 700 hPa,wind shear events could be classified as strong northerly,convergence,southerly,and weak wind types.The proposed RDA successfully identified low-level wind shear except one southerly case,achieving94%alerting rate compared with 82%for the operational system at ZLLL and 88%for the ramp detection algorithm(widely used in some operational alert systems)based on the same dataset.The RDA-unidentified southerly case occurred in a near neutral atmosphere,and wind speed change could not be captured by the Doppler lidar.展开更多
The favourable synoptic situation and climate background for a sandstorm process,which occurred in the period 9—16 April 1988,have been studied through analyzing weather maps,meteorological elements,satellite cloud p...The favourable synoptic situation and climate background for a sandstorm process,which occurred in the period 9—16 April 1988,have been studied through analyzing weather maps,meteorological elements,satellite cloud pictures and sandstorm trajectories.The sand dust origin area,the directions and the paths of sand dust transport,and the extent the sand dust reached are also investigated.The results of measurments and analysis indicate that the concentration of sand dust particles is 10 times greater than the normal.It is also shown that the elements in the sand dust are lithophylic and come from natural source through the chemical composi- tion analysis of the sand dust,so that the sand dust has not been polluted by human activities.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.41006115,41076128)the National Key Technology Research and Development Program of China(Grant No.2006BAB18B03)
文摘Based on the observed and NCEP reanalysis data from 1985 to 2006, the climate background and synoptic situation of fog at Great Wall Station were analyzed.It is shown that the seasonal variation of fog is controlled by the change of general circulation and local pressure field.Three favorable typical synoptic situations for fog development arc found,the Front-of-A-Depression type,the Saddle-Shaped-Field type and the Passing-Weak-Cyclone type.The first one is the most important situation.Advection cooling fog is dominant at Great Wall Station,but there are other kinds of fog as well.As a result,some helpful principles for local fog forecasting are given.
文摘The occurrence of the red tide is an extremely complex process, which is considered as the comprehensive result of various factors. The Yangtze River estuary water area is always in high incidence area of red tide. In this paper, according to the events of red tide and meteorologic and hydrologic data in Yangtze River estuary water area from 2000 to 2010, by using mathematical statistics methods, we analyze the relevance between the occurrence of the red tide and the synoptic situation field, and probe into the regular patterns.
基金Supported by the National Natural Science Foundation of China(41705026,U1433202,41875056,and 91437215)Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province(SCSF201801)Special Key Project of Chongqing Technology Innovation and Application Development(cstc2019jscx-tjsbX0007)。
文摘Organized warm-sector rainfall(OWSR)near the coast of South China tends to occur in certain synoptic situations characterized with either a low-level jet or an anticyclone,with the latter being less investigated.This paper fills the gap by analyzing 15 OWSR events that occurred in an anticyclone synoptic situation during the pre-summer rainy season of 2011-2016,based on high-resolution observational and reanalysis data.The results show that the anticyclone synoptic situation produces marked northerly boundary-layer winds inland and obvious northeasterly,easterly/southwesterly,and southeasterly boundary-layer winds near the coasts of eastern Guangdong,western Guangdong,and Guangxi,respectively.The coastal boundary-layer winds promote favorable environmental conditions and strong convergence for convection initiation;consequently,OWSR is prone to occur near the coasts of western Guangdong and Guangxi,but exhibits different formation and propagation features in the following two subareas.(1)The southeasterly boundary-layer winds tend to converge near the border area between Guangxi and Guangdong(BGG),promoting the formation of a stable convective line along the mountains.The convective line persists with support of upper-level southwesterly winds that facilitate convective cells to propagate along the convective line,producing heavy OWSR along the mountains near BGG.(2)In contrast,a west-east convective line tends to form and maintain near the coast of Yangjiang(YJ)area,about 200 km east of BGG,owing to stable convergence between the easterly(or southwesterly)and the northerly boundary-layer winds reinforced by the mountains near YJ.Moreover,the coupling of upper-level westerly winds with the easterly(southwesterly)boundary-layer winds facilitates expansion(eastward propagation)of the convective line,causing west-east-oriented heavy OWSR near the coast of YJ.In a word,this study reveals refined properties of OWSR initiation and development in the anticyclone synoptic situation,which may help improve the forecast skill of OWSR during the pre-summer rainy season in South China.
基金Supported by the Cooperation Project Study on Impacts of Atmospheric Nitrogen and Phosphorous Input on Water Quality granted by the NSFC (No.40110734) and The Grants Committee of Hong Kong (No.N-HKUST612/01)
文摘Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of average ion deposition rate in spring at the air/water interface, of all anions, that of so4^2- was the largest followed by YO3^-, whereas among all cations, Ca^2+ concentration and the rate was the largest, and then NH4^+ was the next. The correlation of ion concentration indicated that the catchment of the lake has been artificially polluted considerably. Using backward trajectory analysis, the raining water in the stations in Taihu Lake was classified. In spring, marine-originated rain is the main contribution to this area, counting for 92.7% of the total precipitation, in which so4^2-, NO3^- and NH4^+ contributed 89.2%, 88.1%, and 88.3% respectively to the total spring-rain chemicals, whereas land-originated rains contributed in a small amount. However, the ion concentration in the land-originated rain was higher and acidic, causing considerable harm to local ecosystem. The analysis of backward trajectory analysis shows that three types of air masses influenced the chemical composition of the lake water, namely, air mass from NE direction, air mass from SW direction, and local air mass. Although the local air masses often produced small rainfall amount, but the nature of high ion concentration and high acidity impacted the local ecosystem remarkably. The ion concentration and rainfall from long-distance boreal air mass are clearly greater than those in austral air.
基金in part financed by the National Science Centre,Poland,project no.UMO2011/01/B/ST10/07295。
文摘The purpose of this study is to determine the size of air temperature changes with altitude in the mountains of the arid zone, on the example of the Upper Dades valley(High Atlas, Morocco). The air temperature change with altitude was determined on the basis of 5 years data from three meteorological stations. The analysis was carried out on an annual and seasonal basis. The annual and daily variations of thermal gradients between pairs of stations were also determined. It was found that the average thermal gradient in the Upper Dades valley was-1.02℃ per 100 m. The highest values of the thermal gradient occur in winter and the lowest in summer. In winter,the thermal gradient was characterized by the greatest variability. Minima of the daily variation of air temperature gradients were observed in early morning hours and maxima around midday. In the lower part of the valley, air temperature inversion frequently developed between 10 AM and 3 PM UTC.The obtained results show high thermal gradients in the mountains of the arid zone, with their annual amplitude increasing in the lower parts of the valley.The instantaneous values of the gradients were significantly modified by the supply of latent heat and the occurrence of dust storms. It has been shown that the advection factor plays an important role in shaping large gradient values. The study contains novel results of thermal gradient measurements in high mountains of arid zone.
基金Supported by the National Natural Science Foundation of China(41275102)Science and Technology Project of the Northwest Air Traffic Management Bureau of Civil Aviation of China in 2017Special Fund for National Science and Technology Basic Research Program of China(2017FY100900).
文摘Lanzhou Zhongchuan International Airport[International Civil Aviation Organization(ICAO)code ZLLL]is located in a wind shear prone area in China,where most low-level wind shear events occur in dry weather conditions.We analyzed temporal distribution and synoptic circulation background for 18 dry wind shear events reported by pilots at ZLLL by using the NCEP final(FNL)operational global analysis data,and then proposed a lidar-based regional divergence algorithm(RDA)to determine wind shear intensity and location.Low-level wind shear at ZLLL usually occurs in the afternoon and evening in dry conditions.Most wind shear events occur in an unstable atmosphere over ZLLL,with changes in wind speed or direction generally found at 700 hPa and 10-m height.Based on synoptic circulations at 700 hPa,wind shear events could be classified as strong northerly,convergence,southerly,and weak wind types.The proposed RDA successfully identified low-level wind shear except one southerly case,achieving94%alerting rate compared with 82%for the operational system at ZLLL and 88%for the ramp detection algorithm(widely used in some operational alert systems)based on the same dataset.The RDA-unidentified southerly case occurred in a near neutral atmosphere,and wind speed change could not be captured by the Doppler lidar.
文摘The favourable synoptic situation and climate background for a sandstorm process,which occurred in the period 9—16 April 1988,have been studied through analyzing weather maps,meteorological elements,satellite cloud pictures and sandstorm trajectories.The sand dust origin area,the directions and the paths of sand dust transport,and the extent the sand dust reached are also investigated.The results of measurments and analysis indicate that the concentration of sand dust particles is 10 times greater than the normal.It is also shown that the elements in the sand dust are lithophylic and come from natural source through the chemical composi- tion analysis of the sand dust,so that the sand dust has not been polluted by human activities.