This work reports the adsorption of strontium from aqueous solutions onto PAN/zeolite composite. The strontium adsorption on the composite adsorbent was studied as a function of initial strontium concentration, pH of ...This work reports the adsorption of strontium from aqueous solutions onto PAN/zeolite composite. The strontium adsorption on the composite adsorbent was studied as a function of initial strontium concentration, pH of the solution, contact time and temperature. Adsorption isotherms like Langmuir, Freundlich,Dubinin–Radushkevich (D–R) and Temkin were used to analyze the equilibrium data at the different concentrations.Adsorption process well fitted to Temkin isotherm model. Thermodynamic parameters such as the changes in enthalpy, entropy and Gibbs’ free energy were determined, showing adsorption to be an exothermic and spontaneous process.展开更多
Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, lead removal from aqueous solutions was investigated using condensed tannin ge...Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, lead removal from aqueous solutions was investigated using condensed tannin gel adsorbent synthesized from a natural tannin compound. It is found that the adsorption is strongly affected by pH values of aqueous solutions. Within pH range of 3 5—6, when initial lead concentration is 100 mg/L, removal efficiency is more than 90%. Adsorption equilibrium is reached within 150 minutes. The adsorption isotherm fits well with the Langmuir equation, by which the saturated adsorption uptake of 190 mg Pb 2+ /g dry tannin gel adsorbent is obtained. By means of thermodynamics analysis, it is revealed that the process is exothermic and the adsorption heat is up to 38 4 kJ/mol. With respect to high efficiency, moderate pH requirement and minimized second pollution, the tannin gel adsorbent exhibits a promising potential in the removal of lead from wastewater.展开更多
A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) for adsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surfa...A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) for adsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads, this resin can be used directly without wetting process. A comparison of the sorption properties of the new resin and Amberlite XAD-4 toward four phenolic compounds, phenol, p-cresol, p-chlorophenol, and p-nitrophenol was made. The capacities of equilibrium adsorption of AM-1 for all four phenolic compounds increased around 20% over that of Amberlite XAD-4, which may be contributed to phenol hydroxyl group on the surface and the unusual pore distribution. At their dilute solution, the equilibrium adsorption capacities of AM-1 for phenol increased about 62% over that of Amberlite XAD-4, while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%, suggesting an advantage of AM-1 over Amberlite XAD-4 in the collection of phenol. Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compounds indicate a physical adsorption process on the Amberlite XAD-4 and AM-1 resins. Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.展开更多
Perfluorooctane sulfonate(PFOS),as a potential persistent organic pollutant,has been widely detected in water environments,and has become a great concern in recent years.PFOS is very stable and difficult to decompose ...Perfluorooctane sulfonate(PFOS),as a potential persistent organic pollutant,has been widely detected in water environments,and has become a great concern in recent years.PFOS is very stable and difficult to decompose using conventional techniques.Sorption may be an attractive method to remove it from water.In this study,the molecularly imprinted polymer(MIP)adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate(PFOS)from water.The MIP adsorbents using perfluorooctanoic acid(PFOA)as the template had good imprinting effects and could selectively remove PFOS from aqueous solution.The sorption behaviors including sorption kinetics,isotherms,and effect of pH,salt,and competitive anions were investigated.Experimental results showed that the sorption of PFOS on the MIP adsorbents was very fast,pHdependent,and highly selective.The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents.The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations,which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface.The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS.The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.展开更多
A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2...A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2 physisorption measurements,and employed as potential adsorbents for CO_2 adsorption.The influence of structural and textural properties of these adsorbents over the CO_2 adsorption behaviour was also investigated.The results showed that MgO-based products prepared by solution–combustion and ball-milling processes,were highly porous,fluffy,nanocrystalline structures in nature,which are unique physico-chemical properties that significantly contribute to enhance their CO_2 adsorption.It was found that the MgO synthesized by solution combustion process,using a molar ratio of urea to magnesium nitrate(2:1),and treated by ball-milling during 2.5 hr(MgO-BM2.5h),exhibited the maximum CO_2 adsorption capacity of 1.611 mmol/g at 25℃ and 1 atm,mainly via chemisorption.The CO_2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area,total pore volume,pore size distribution and crystallinity.The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO_2adsorption–desorption times,without any significant loss of performance,that supports the potential of MgO-based adsorbent.The results confirmed that the special features of MgO prepared by solution–combustion and treated by ball-milling during 2.5 hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO_2 capture technologies.展开更多
Metal oxide/hydroxide-based nanocomposite adsorbents with porous supporting matrices have been recognized as efficient adsorbents for phosphorus recovery.Aiming at satisfying increasingly restrictive environmental req...Metal oxide/hydroxide-based nanocomposite adsorbents with porous supporting matrices have been recognized as efficient adsorbents for phosphorus recovery.Aiming at satisfying increasingly restrictive environmental requirements involving improving metal site utilization and lowering metal leakage risk,a glycol-solvothermal confined-space synthesis strategy was proposed for the fabrication of Fe OOH/anion exchanger nanocomposites(Fe/900s)with enhanced metal site utilization and reduced metal leakage risk.Compared to composites prepared using alkaline precipitation methods,Fe/900s performed comparably,with a high adsorption capacity of 19.05 mg-P/g with an initial concentration of 10 mg-P/L,a high adsorption selectivity of 8.2 mg-P/g in the presence of 500 mg-SO_(4)^(2-)/L,and high long-term resilience(with a capacity loss of~14%after five cycles),along with substantially lower Fe loading amount(4.11 wt.%)and Fe leakage percentage.Mechanistic investigation demonstrated that contribution of the specific Fe OOH sites to phosphate adsorption increased substantially(up to 50.97%under the optimal conditions),in which Fe(Ⅲ)-OH was the dominant efficient species.The side effects of an excessively long reaction time,which included quaternary ammonium decomposition,Fe OOH aggregation,and Fe(Ⅲ)reduction,were discussed as guidance for optimizing the synthesis strategy.The glycol-solvothermal strategy provides a facile solution to environmental problems through nanocrystal growth engineering in a confined space.展开更多
A series of organo-ceramic adsorbents have been synthesized by a sol-gel processing technique for metal ion extraction. These adsorbents generally have significantly high metal uptake capacities, good physical-chemica...A series of organo-ceramic adsorbents have been synthesized by a sol-gel processing technique for metal ion extraction. These adsorbents generally have significantly high metal uptake capacities, good physical-chemical stabilities, and well-designed pore geometries compared to other pre-existing metalchelating ceramic-based adsorbents. This work describes the synthesis and evaluation of pyrazole and calix[4]arene crown adsorbents for selective separation of platinum, palladium, and gold and cesium ions, respectively, from solutions. These materials exhibit mesoporous properties with high surface areas and pore volumes. The sol-gel synthesis starting with precursor silanes and titania results in gel particles of desired pore characteristics and high capacity and stability. Characterization studies, such as adsorption isotherms, breakthrough curves for fixed bed operation, and material stability, show promising results for applications to metal sepation.展开更多
Three adsorbents including TiO_(2),Ti-Ce,and Ti-La hybrid oxides were prepared to remove fluoride from aqueous solution.The Ti-Ce and Ti-La hybrid adsorbents obtained by the hydrolysis-precipitation method had much hi...Three adsorbents including TiO_(2),Ti-Ce,and Ti-La hybrid oxides were prepared to remove fluoride from aqueous solution.The Ti-Ce and Ti-La hybrid adsorbents obtained by the hydrolysis-precipitation method had much higher sorption capacity for fluoride than the TiO_(2) adsorbent prepared through hydrolysis.Rare earth(Ce and La)oxides and TiO_(2) exhibited a synergistic effect in the hybrid adsorbents for fluoride sorption.The sorption equilibrium of fluoride on the three adsorbents was achieved within 4 h,and the pseudo-second-order model described the sorption kinetics well.The sorption isotherms fitted the Langmuir model well,and the adsorption capacities of fluoride on the Ti-Ce and Ti-La adsorbents were about 9.6 and 15.1 mg·g^(-1),respectively,at the equilibrium fluoride concentration of 1.0 mg·L^(-1),much higher than the 1.7 mg·g^(-1) on the TiO_(2).The sorption capacities of fluoride on the three adsorbents decreased significantly when the solution pH increased from 3 to 9.5.The electrostatic interaction played an important role in fluoride removal by the three adsorbents,and Fourier transform infrared(FTIR)analysis indicated that the hydroxyl groups on the adsorbent surface were involved in fluoride adsorption.展开更多
The autonomy and property of atoms/molecules adsorbed on the surface of a microcantilever can be probed by measuring its resonance frequency shift due to adsorption.The resonance frequency change of a cantilever induc...The autonomy and property of atoms/molecules adsorbed on the surface of a microcantilever can be probed by measuring its resonance frequency shift due to adsorption.The resonance frequency change of a cantilever induced by chemisorption is theoretically studied. Oxygen chemisorbed on the Si(100) surface is taken as a representative example.We demonstrate that the resonant response of the cantilever is mainly determined by the chemisorption-induced bending stiffness variation,which depends on the bond configurations formed by the adsorbed atoms and substrate atoms.This study is helpful for optimal design of microcantilever-based sensors for various applications.展开更多
The concept of effective concentration of surfaetant in membrane phase has been proposed,considering the high ad-sorption density of the surfactant at the droplet interfaces in LSM system.The effective concentration o...The concept of effective concentration of surfaetant in membrane phase has been proposed,considering the high ad-sorption density of the surfactant at the droplet interfaces in LSM system.The effective concentration of surfactant,C<sub>2</sub>,can be estimated by Eq.(7)—(9).The swelling caused by emulsification during the initial dispersion process was investigated.The swelling rate wasmeasured by a density method.A model for estimating the"Emulsification" swelling rate,F<sub>se</sub>,has been proposed,basedon a mechanism of swelling due to the entrainment of water resulted from the interracial turbulence and emulsification inthe initial dispersion process.It has been found that Eq.(26)gives excellent fit to the experimental data of Fujinawa,etal.and of the authors.展开更多
文摘This work reports the adsorption of strontium from aqueous solutions onto PAN/zeolite composite. The strontium adsorption on the composite adsorbent was studied as a function of initial strontium concentration, pH of the solution, contact time and temperature. Adsorption isotherms like Langmuir, Freundlich,Dubinin–Radushkevich (D–R) and Temkin were used to analyze the equilibrium data at the different concentrations.Adsorption process well fitted to Temkin isotherm model. Thermodynamic parameters such as the changes in enthalpy, entropy and Gibbs’ free energy were determined, showing adsorption to be an exothermic and spontaneous process.
文摘Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, lead removal from aqueous solutions was investigated using condensed tannin gel adsorbent synthesized from a natural tannin compound. It is found that the adsorption is strongly affected by pH values of aqueous solutions. Within pH range of 3 5—6, when initial lead concentration is 100 mg/L, removal efficiency is more than 90%. Adsorption equilibrium is reached within 150 minutes. The adsorption isotherm fits well with the Langmuir equation, by which the saturated adsorption uptake of 190 mg Pb 2+ /g dry tannin gel adsorbent is obtained. By means of thermodynamics analysis, it is revealed that the process is exothermic and the adsorption heat is up to 38 4 kJ/mol. With respect to high efficiency, moderate pH requirement and minimized second pollution, the tannin gel adsorbent exhibits a promising potential in the removal of lead from wastewater.
基金The Science & Technology Council Jiangsu Province P. R. China(BK 2000016).
文摘A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) for adsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads, this resin can be used directly without wetting process. A comparison of the sorption properties of the new resin and Amberlite XAD-4 toward four phenolic compounds, phenol, p-cresol, p-chlorophenol, and p-nitrophenol was made. The capacities of equilibrium adsorption of AM-1 for all four phenolic compounds increased around 20% over that of Amberlite XAD-4, which may be contributed to phenol hydroxyl group on the surface and the unusual pore distribution. At their dilute solution, the equilibrium adsorption capacities of AM-1 for phenol increased about 62% over that of Amberlite XAD-4, while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%, suggesting an advantage of AM-1 over Amberlite XAD-4 in the collection of phenol. Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compounds indicate a physical adsorption process on the Amberlite XAD-4 and AM-1 resins. Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50608045)the special fund of State Key Joint Laboratory of Environment Simulation and Pollution(Grant No.08Z04ESPCT)the National Outstanding Youth Foundation of China(Grant No.50625823).
文摘Perfluorooctane sulfonate(PFOS),as a potential persistent organic pollutant,has been widely detected in water environments,and has become a great concern in recent years.PFOS is very stable and difficult to decompose using conventional techniques.Sorption may be an attractive method to remove it from water.In this study,the molecularly imprinted polymer(MIP)adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate(PFOS)from water.The MIP adsorbents using perfluorooctanoic acid(PFOA)as the template had good imprinting effects and could selectively remove PFOS from aqueous solution.The sorption behaviors including sorption kinetics,isotherms,and effect of pH,salt,and competitive anions were investigated.Experimental results showed that the sorption of PFOS on the MIP adsorbents was very fast,pHdependent,and highly selective.The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents.The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations,which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface.The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS.The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.
基金the National Institute of Nuclear Research(ININ),México,for financial support through project CB-406 stagesⅠ-Ⅲ
文摘A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2 physisorption measurements,and employed as potential adsorbents for CO_2 adsorption.The influence of structural and textural properties of these adsorbents over the CO_2 adsorption behaviour was also investigated.The results showed that MgO-based products prepared by solution–combustion and ball-milling processes,were highly porous,fluffy,nanocrystalline structures in nature,which are unique physico-chemical properties that significantly contribute to enhance their CO_2 adsorption.It was found that the MgO synthesized by solution combustion process,using a molar ratio of urea to magnesium nitrate(2:1),and treated by ball-milling during 2.5 hr(MgO-BM2.5h),exhibited the maximum CO_2 adsorption capacity of 1.611 mmol/g at 25℃ and 1 atm,mainly via chemisorption.The CO_2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area,total pore volume,pore size distribution and crystallinity.The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO_2adsorption–desorption times,without any significant loss of performance,that supports the potential of MgO-based adsorbent.The results confirmed that the special features of MgO prepared by solution–combustion and treated by ball-milling during 2.5 hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO_2 capture technologies.
基金supported by the National Natural Science Foundation of China(Nos.52070100,51978341,52081330506,and 52011530433)the Natural Science Foundation of Jiangsu Province of China(No.BK20190087)+1 种基金the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materialsa project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Metal oxide/hydroxide-based nanocomposite adsorbents with porous supporting matrices have been recognized as efficient adsorbents for phosphorus recovery.Aiming at satisfying increasingly restrictive environmental requirements involving improving metal site utilization and lowering metal leakage risk,a glycol-solvothermal confined-space synthesis strategy was proposed for the fabrication of Fe OOH/anion exchanger nanocomposites(Fe/900s)with enhanced metal site utilization and reduced metal leakage risk.Compared to composites prepared using alkaline precipitation methods,Fe/900s performed comparably,with a high adsorption capacity of 19.05 mg-P/g with an initial concentration of 10 mg-P/L,a high adsorption selectivity of 8.2 mg-P/g in the presence of 500 mg-SO_(4)^(2-)/L,and high long-term resilience(with a capacity loss of~14%after five cycles),along with substantially lower Fe loading amount(4.11 wt.%)and Fe leakage percentage.Mechanistic investigation demonstrated that contribution of the specific Fe OOH sites to phosphate adsorption increased substantially(up to 50.97%under the optimal conditions),in which Fe(Ⅲ)-OH was the dominant efficient species.The side effects of an excessively long reaction time,which included quaternary ammonium decomposition,Fe OOH aggregation,and Fe(Ⅲ)reduction,were discussed as guidance for optimizing the synthesis strategy.The glycol-solvothermal strategy provides a facile solution to environmental problems through nanocrystal growth engineering in a confined space.
基金National Science Foundation (Nos. CTS-9805118 and CTS-0120204)
文摘A series of organo-ceramic adsorbents have been synthesized by a sol-gel processing technique for metal ion extraction. These adsorbents generally have significantly high metal uptake capacities, good physical-chemical stabilities, and well-designed pore geometries compared to other pre-existing metalchelating ceramic-based adsorbents. This work describes the synthesis and evaluation of pyrazole and calix[4]arene crown adsorbents for selective separation of platinum, palladium, and gold and cesium ions, respectively, from solutions. These materials exhibit mesoporous properties with high surface areas and pore volumes. The sol-gel synthesis starting with precursor silanes and titania results in gel particles of desired pore characteristics and high capacity and stability. Characterization studies, such as adsorption isotherms, breakthrough curves for fixed bed operation, and material stability, show promising results for applications to metal sepation.
文摘Three adsorbents including TiO_(2),Ti-Ce,and Ti-La hybrid oxides were prepared to remove fluoride from aqueous solution.The Ti-Ce and Ti-La hybrid adsorbents obtained by the hydrolysis-precipitation method had much higher sorption capacity for fluoride than the TiO_(2) adsorbent prepared through hydrolysis.Rare earth(Ce and La)oxides and TiO_(2) exhibited a synergistic effect in the hybrid adsorbents for fluoride sorption.The sorption equilibrium of fluoride on the three adsorbents was achieved within 4 h,and the pseudo-second-order model described the sorption kinetics well.The sorption isotherms fitted the Langmuir model well,and the adsorption capacities of fluoride on the Ti-Ce and Ti-La adsorbents were about 9.6 and 15.1 mg·g^(-1),respectively,at the equilibrium fluoride concentration of 1.0 mg·L^(-1),much higher than the 1.7 mg·g^(-1) on the TiO_(2).The sorption capacities of fluoride on the three adsorbents decreased significantly when the solution pH increased from 3 to 9.5.The electrostatic interaction played an important role in fluoride removal by the three adsorbents,and Fourier transform infrared(FTIR)analysis indicated that the hydroxyl groups on the adsorbent surface were involved in fluoride adsorption.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11102043,10732050 and 11072170the National Basic Research Program of China under Grant No 2010CB631005the Doctorial Start-up Fund of Guangdong University of Technology under Grant No 083065.
文摘The autonomy and property of atoms/molecules adsorbed on the surface of a microcantilever can be probed by measuring its resonance frequency shift due to adsorption.The resonance frequency change of a cantilever induced by chemisorption is theoretically studied. Oxygen chemisorbed on the Si(100) surface is taken as a representative example.We demonstrate that the resonant response of the cantilever is mainly determined by the chemisorption-induced bending stiffness variation,which depends on the bond configurations formed by the adsorbed atoms and substrate atoms.This study is helpful for optimal design of microcantilever-based sensors for various applications.
文摘The concept of effective concentration of surfaetant in membrane phase has been proposed,considering the high ad-sorption density of the surfactant at the droplet interfaces in LSM system.The effective concentration of surfactant,C<sub>2</sub>,can be estimated by Eq.(7)—(9).The swelling caused by emulsification during the initial dispersion process was investigated.The swelling rate wasmeasured by a density method.A model for estimating the"Emulsification" swelling rate,F<sub>se</sub>,has been proposed,basedon a mechanism of swelling due to the entrainment of water resulted from the interracial turbulence and emulsification inthe initial dispersion process.It has been found that Eq.(26)gives excellent fit to the experimental data of Fujinawa,etal.and of the authors.