Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out fro...Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.展开更多
There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It main...There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It mainly includes two algorithms: coarse segmentation and refined segmen- tation. Firstly, The river regions are coarsely segmented by the wavelet energy feature,and then refined segmented accurately by the gradient threshold which is got adaptively. The experimental results show the validity of the method, which provides a good foundation for targets detection above the river.展开更多
Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the sup...Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.展开更多
Marine oil spills are among the most significant sources of marine pollution.Synthetic aperture radar(SAR)has been used to improve oil spill observations because of its advantages in oil spill detection and identifica...Marine oil spills are among the most significant sources of marine pollution.Synthetic aperture radar(SAR)has been used to improve oil spill observations because of its advantages in oil spill detection and identification.However,speckle noise,weak boundaries,and intensity inhomogeneity often exist in the oil spill regions of SAR imagery,which will seriously aff ect the accurate identification of oil spills.To enhance marine oil spill segmentation of SAR images,a fast,edge-preserving framework based on the distance-regularized level set evolution(DRLSE)model was proposed.Specifically,a bilateral filter penalty term is designed and incorporated into the DRLSE energy function(BF-DRLSE)to preserve the edges of oil spills,and an adaptive initial box boundary was selected for the DRLSE model to reduce the operation time complexity.Two sets of RadarSat-2 SAR data were used to test the proposed method.The experimental results indicate that the bilateral filtering scheme incorporated into the energy function during level set evolution improved the stability of level set evolution.Compared with other methods,the proposed improved BF-DRLSE algorithm displayed a higher overall segmentation accuracy(97.83%).In addition,using an appropriate initial box boundary for the DRLSE method accelerated the global search process,improved the accuracy of oil spill segmentation,and reduced computational time.Therefore,the results suggest that the proposed framework is eff ective and applicable for marine oil spill segmentation.展开更多
Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values chang...Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.展开更多
In this letter,a multiphase level set approach unifying region and boundary-based infor-mation for multi-region segmentation of Synthetic Aperture Radar(SAR)image is presented.Anenergy functional that is applicable fo...In this letter,a multiphase level set approach unifying region and boundary-based infor-mation for multi-region segmentation of Synthetic Aperture Radar(SAR)image is presented.Anenergy functional that is applicable for SAR image segmentation is defined.It consists of two termsdescribing the local statistic characteristics and the gradient characteristics of SAR image respectively.A multiphase level set model that explicitly describes the different regions in one image is proposed.The purpose of such a multiphase model is not only to simplify the way of denoting multi-region by levelset but also to guarantee the accuracy of segmentation.According to the presented multiphase model,the curve evolution equations with respect to edge curves are deduced.The multi-region segmentationis implemented by the numeric solution of the partial differential equations.The performance of theapproach is verified by both simulation and real SAR images.The experiments show that the proposedalgorithm reduces the speckle effect on segmentation and increases the boundary alignment accuracy,thus correctly divides the multi-region SAR image into different homogenous regions.展开更多
A simple and fast approach based on eigenvalue similarity metric for Polarimetric SAR image segmentation of Land Cover is proposed in this paper. The approach uses eigenvalues of the coherency matrix as to construct s...A simple and fast approach based on eigenvalue similarity metric for Polarimetric SAR image segmentation of Land Cover is proposed in this paper. The approach uses eigenvalues of the coherency matrix as to construct similarity metric of clustering algorithm to segment SAR image. The Mahalanobis distance is used to metric pairwise similarity between pixels to avoid the manual scale parameter tuning in previous spectral clustering method. Furthermore, the spatial coherence constraints and spectral clustering ensemble are employed to stabilize and improve the segmentation performance. All experiments are carried out on three sets of Polarimetric SAR data. The experimental results show that the proposed method is superior to other comparison methods.展开更多
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu...Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.展开更多
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition...The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reas...Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reason is that large scene reconstruction needs a higher dimension of the sensing matrix. To reduce this limitation, a fast high resolution ISAR imaging method,which is based on scene segmentation for random chirp frequencystepped signals, is proposed. The idea of scene segmentation is used to solve the problems aforementioned. In the method,firstly, the observed scene is divided into multiple sub-scenes and then the sub-scenes are reconstructed respectively. Secondly, the whole image scene can be obtained through the stitching of the sub-scenes. Due to the reduction of the dimension of the sensing matrix, the requirement of the memory storage space is reduced substantially. In addition, due to the nonlinear superposition of the reconstructed time of the segmented sub-scenes, the reconstruction time is reduced, and the purpose of fast imaging is achieved.Meanwhile, the feasibility and the related factors which affect the performance of the proposed method are also analyzed, and the selection criterion of the scene segmentation is afforded. Finally,theoretical analysis and simulation results demonstrate the feasibility and effectiveness of the proposed method.展开更多
Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Ind...Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.展开更多
The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-...The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.展开更多
The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition....The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition. It is difficult to classify targets by the shadow information independently, because the shadow shape is dependent on the radar aspect angle, the depression angle and the resolution. Moreover, the shadow shapes of different targets are similar. When the multiple SAR images of one target from different aspects are available, the performance of the target recognition can be improved. Aimed at the problem, a multi-aspect SAR image recognition technique based on the shadow information is developed. It extracts shadow profiles from SAR images, and takes chain codes as the feature vectors of targets. Then, feature vectors on multiple aspects of the same target are combined with feature sequences, and the hidden Markov model (HMM) is applied to the feature sequences for the target recognition. The simulation result shows the effectiveness of the method.展开更多
In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic tra...In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic transformed to change the statistical property of the speckles. Then an HMT was constructed in the correspondent wavelet domain. Based on this model, the image signal was restored by maximum likelihood estimation and speckle noise was suppressed. Simulating SAR images had shown that the performance of the filter is satisfactory for both speckle smoothing and edges presentation, and for generating visually natural images as well.展开更多
Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio...Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.展开更多
Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular rese...Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks.展开更多
A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) est...A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.展开更多
To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed b...To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.展开更多
基金supported by the National Key R&D Program of China(2017YFC1405600)the Fundamental Research Funds for the Central Universities(JB180213)
文摘Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.
基金Support by the National Natural Science Foundation of China (NSFC) (No.60472072)the Specialized Research Foundation for the Doctoral Program of Higher Education (No.20040699034)+1 种基金the Aeronautical Science Foundation of China (No.05I53076)the Yellow River Conser-vancy Commission (YRCC) Research on ecological im-provement of the Yellow River (No.2004SZ01-04)
文摘There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It mainly includes two algorithms: coarse segmentation and refined segmen- tation. Firstly, The river regions are coarsely segmented by the wavelet energy feature,and then refined segmented accurately by the gradient threshold which is got adaptively. The experimental results show the validity of the method, which provides a good foundation for targets detection above the river.
基金supported by the National Natural Science Foundation of China(4117132741301361)+2 种基金the National Key Basic Research Program of China(973 Program)(2012CB719903)the Science and Technology Project of Ministry of Transport of People’s Republic of China(2012-364-X11-803)the Shanghai Municipal Natural Science Foundation(12ZR1433200)
文摘Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.
基金Supported by the National Key R&D Program of China(No.2017YFC1405600)the National Natural Science Foundation of China(Nos.41776182,42076182)the Natural Science Foundation of Shandong Province(No.ZR2016DM16)。
文摘Marine oil spills are among the most significant sources of marine pollution.Synthetic aperture radar(SAR)has been used to improve oil spill observations because of its advantages in oil spill detection and identification.However,speckle noise,weak boundaries,and intensity inhomogeneity often exist in the oil spill regions of SAR imagery,which will seriously aff ect the accurate identification of oil spills.To enhance marine oil spill segmentation of SAR images,a fast,edge-preserving framework based on the distance-regularized level set evolution(DRLSE)model was proposed.Specifically,a bilateral filter penalty term is designed and incorporated into the DRLSE energy function(BF-DRLSE)to preserve the edges of oil spills,and an adaptive initial box boundary was selected for the DRLSE model to reduce the operation time complexity.Two sets of RadarSat-2 SAR data were used to test the proposed method.The experimental results indicate that the bilateral filtering scheme incorporated into the energy function during level set evolution improved the stability of level set evolution.Compared with other methods,the proposed improved BF-DRLSE algorithm displayed a higher overall segmentation accuracy(97.83%).In addition,using an appropriate initial box boundary for the DRLSE method accelerated the global search process,improved the accuracy of oil spill segmentation,and reduced computational time.Therefore,the results suggest that the proposed framework is eff ective and applicable for marine oil spill segmentation.
基金Supported by National Basic Research Development Program of China(973 Program)(2007CB311006) National Natural Science Foundation of China(60602026),Acknowledgement The authors would like to thank ESA (http://earth.esa. int/polsarpro/datasets.html) for providing the data.
文摘Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.
文摘In this letter,a multiphase level set approach unifying region and boundary-based infor-mation for multi-region segmentation of Synthetic Aperture Radar(SAR)image is presented.Anenergy functional that is applicable for SAR image segmentation is defined.It consists of two termsdescribing the local statistic characteristics and the gradient characteristics of SAR image respectively.A multiphase level set model that explicitly describes the different regions in one image is proposed.The purpose of such a multiphase model is not only to simplify the way of denoting multi-region by levelset but also to guarantee the accuracy of segmentation.According to the presented multiphase model,the curve evolution equations with respect to edge curves are deduced.The multi-region segmentationis implemented by the numeric solution of the partial differential equations.The performance of theapproach is verified by both simulation and real SAR images.The experiments show that the proposedalgorithm reduces the speckle effect on segmentation and increases the boundary alignment accuracy,thus correctly divides the multi-region SAR image into different homogenous regions.
文摘A simple and fast approach based on eigenvalue similarity metric for Polarimetric SAR image segmentation of Land Cover is proposed in this paper. The approach uses eigenvalues of the coherency matrix as to construct similarity metric of clustering algorithm to segment SAR image. The Mahalanobis distance is used to metric pairwise similarity between pixels to avoid the manual scale parameter tuning in previous spectral clustering method. Furthermore, the spatial coherence constraints and spectral clustering ensemble are employed to stabilize and improve the segmentation performance. All experiments are carried out on three sets of Polarimetric SAR data. The experimental results show that the proposed method is superior to other comparison methods.
基金Under the auspices of National Natural Science Foundation of China(No.42071385)National Science and Technology Major Project of High Resolution Earth Observation System(No.79-Y50-G18-9001-22/23)。
文摘Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(62325104).
文摘The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reason is that large scene reconstruction needs a higher dimension of the sensing matrix. To reduce this limitation, a fast high resolution ISAR imaging method,which is based on scene segmentation for random chirp frequencystepped signals, is proposed. The idea of scene segmentation is used to solve the problems aforementioned. In the method,firstly, the observed scene is divided into multiple sub-scenes and then the sub-scenes are reconstructed respectively. Secondly, the whole image scene can be obtained through the stitching of the sub-scenes. Due to the reduction of the dimension of the sensing matrix, the requirement of the memory storage space is reduced substantially. In addition, due to the nonlinear superposition of the reconstructed time of the segmented sub-scenes, the reconstruction time is reduced, and the purpose of fast imaging is achieved.Meanwhile, the feasibility and the related factors which affect the performance of the proposed method are also analyzed, and the selection criterion of the scene segmentation is afforded. Finally,theoretical analysis and simulation results demonstrate the feasibility and effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (NSFC) (No.60772103)China National Key Laboratory of Microwave Imaging Technology Foundation (No.9140C1903050804)
文摘Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.
基金Supported by the National Basic Research Program (973) of China (No. 2009CB72400)
文摘The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.
文摘The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition. It is difficult to classify targets by the shadow information independently, because the shadow shape is dependent on the radar aspect angle, the depression angle and the resolution. Moreover, the shadow shapes of different targets are similar. When the multiple SAR images of one target from different aspects are available, the performance of the target recognition can be improved. Aimed at the problem, a multi-aspect SAR image recognition technique based on the shadow information is developed. It extracts shadow profiles from SAR images, and takes chain codes as the feature vectors of targets. Then, feature vectors on multiple aspects of the same target are combined with feature sequences, and the hidden Markov model (HMM) is applied to the feature sequences for the target recognition. The simulation result shows the effectiveness of the method.
文摘In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic transformed to change the statistical property of the speckles. Then an HMT was constructed in the correspondent wavelet domain. Based on this model, the image signal was restored by maximum likelihood estimation and speckle noise was suppressed. Simulating SAR images had shown that the performance of the filter is satisfactory for both speckle smoothing and edges presentation, and for generating visually natural images as well.
文摘Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.
基金Supported by the National Natural Science Foundation of China(No.61471136)the Special Project for Global Change and Air-sea Interaction of Ministry of Natural Resources(No.GASI-02-SCS-YGST2-04)the Chinese Association of Ocean Mineral Resources R&D(No.DY135-E2-4)
文摘Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks.
文摘A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)+2 种基金the Open Project Foundation of Key Lab of Port,Waterway and Sedimentation Engineering of the Ministry of Transportthe State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Priority Academic Program Development of Jiangsu Higher Education Institution
文摘To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.