The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of ...The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.展开更多
The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the syn...The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.展开更多
Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark...Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately.展开更多
In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)in...In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.展开更多
The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving t...The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.展开更多
Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large...Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large scene image acquisition capabilities of SAR.However,due to strong speckle noise and low signal-to-noise ratio,it is difficult to extract representative features of target from SAR images,which greatly inhibits the effectiveness of traditional methods.In order to address the above problems,a framework called contextual rotation region-based convolutional neural network(RCNN) with multilayer fusion is proposed in this paper.Specifically,aimed to enable RCNN to perform target detection in large scene SAR images efficiently,maximum sliding strategy is applied to crop the large scene image into a series of sub-images before RCNN.Instead of using the highest-layer output for proposal generation and target detection,fusion feature maps with high resolution and rich semantic information are constructed by multilayer fusion strategy.Then,we put forwards rotation anchors to predict the minimum circumscribed rectangle of targets to reduce redundant detection region.Furthermore,shadow areas serve as contextual features to provide extraneous information for the detector identify and locate targets accurately.Experimental results on the simulated large scene SAR image dataset show that the proposed method achieves a satisfactory performance in large scene SAR target detection.展开更多
The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture d...The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture distribution to approximate and estimate multi-modal histogram of SAR image. Then, based on the principle of MAP, when a priori probability is both unknown and learned respectively, the sample pixels are classified into different classes c = {target,shadow, background}. Last, it compares the results of two different target detections. Simulation results preferably indicate that the presented algorithm is fast and robust, with the learned a priori probability, an approach to target detection is reliable and promising.展开更多
In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an...In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection.展开更多
Designing detection algorithms with high efficiency for Synthetic Aperture Radar(SAR) imagery is essential for the operator SAR Automatic Target Recognition(ATR) system.This work abandons the detection strategy of vis...Designing detection algorithms with high efficiency for Synthetic Aperture Radar(SAR) imagery is essential for the operator SAR Automatic Target Recognition(ATR) system.This work abandons the detection strategy of visiting every pixel in SAR imagery as done in many traditional detection algorithms,and introduces the gridding and fusion idea of different texture fea-tures to realize fast target detection.It first grids the original SAR imagery,yielding a set of grids to be classified into clutter grids and target grids,and then calculates the texture features in each grid.By fusing the calculation results,the target grids containing potential maneuvering targets are determined.The dual threshold segmentation technique is imposed on target grids to obtain the regions of interest.The fused texture features,including local statistics features and Gray-Level Co-occurrence Matrix(GLCM),are investigated.The efficiency and superiority of our proposed algorithm were tested and verified by comparing with existing fast de-tection algorithms using real SAR data.The results obtained from the experiments indicate the promising practical application val-ue of our study.展开更多
Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting...Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.展开更多
When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires bloc...When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires block-by-block estimation of clutter models and FCM clustering converges to local optimum. To address these problems, this paper pro-poses a new detection algorithm: knowledge-based combined with improved genetic algorithm-fuzzy C-means (GA-FCM) algorithm. Firstly, the algorithm takes target region's maximum and average intensity, area, length of long axis and long-to-short axis ratio of the external ellipse as factors which influence the target appearing probabil- ity. The knowledge-based detection algorithm can produce preprocess results without the need of estimation of clutter models as CFAR does. Afterward the GA-FCM algorithm is improved to cluster pre-process results. It has advantages of incorporating global optimizing ability of GA and local optimizing ability of FCM, which will further eliminate false alarms and get better results. The effectiveness of the proposed technique is experimentally validated with real SAR images.展开更多
To automatically detect oil tanks in polarimetric synthetic aperture radar(SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is d...To automatically detect oil tanks in polarimetric synthetic aperture radar(SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is detected to locate the region of interest(ROI) of oil tanks. Then all suspicious targets in the ROI are extracted by the segmentation of strong scattering targets and the classifier of H/α. The template targets are selected from the suspicious targets by the combination of a proposed circular degree parameter and the similarity parameter(SP) of the polarimetric coherency matrix. Finally, oil tanks are detected according to the statistics of the similarity parameter between each suspicious target and template targets in ROI. Polarimetric SAR data acquired by RADARSAT-2 over Berkeley and Singapore areas are used for testing. Experiment results show that most of the targets are correctly detected and the overall detection rate is close to 80%.The false rate is effectively reduced by the proposed algorithm compared with the method without T-shaped harbor recognition.展开更多
Synthetic Aperture Radar(SAR) imaging systems have been widely used in civil and military fields due to their all-weather and all-day abilities and various other advantages. However, due to image data exponentially in...Synthetic Aperture Radar(SAR) imaging systems have been widely used in civil and military fields due to their all-weather and all-day abilities and various other advantages. However, due to image data exponentially increasing, there is a need for novel automatic target detection and recognition technologies. In recent years, the visual attention mechanism in the visual system has helped humans effectively deal with complex visual signals. In particular, biologically inspired top-down attention models have garnered much attention recently. This paper presents a visual attention model for SAR target detection, comprising a bottom-up stage and top-down process.In the bottom-up step, the Itti model is improved based on the difference between SAR and optical images. The top-down step fully utilizes prior information to further detect targets. Extensive detection experiments carried out on the benchmark Moving and Stationary Target Acquisition and Recognition(MSTAR) dataset show that, compared with typical visual models and other popular detection methods, our model has increased ability and robustness for SAR target detection, under a range of Signal to Clutter Ratio(SCR) conditions and scenes. In addition, results obtained using only the bottom-up stage are inferior to those of the proposed method, further demonstrating the effectiveness and rationality of a top-down strategy. In summary, our proposed visual attention method can be considered a potential benchmark resource for the SAR research community.展开更多
Based on a joint time-frequency two dimensional processing, this paper proposes a method for the detection and imaging of moving targets SAR by using Wigner-Ville Distribution (WVD). It is a parameter estimation metho...Based on a joint time-frequency two dimensional processing, this paper proposes a method for the detection and imaging of moving targets SAR by using Wigner-Ville Distribution (WVD). It is a parameter estimation method to generate a high resolution image. The problem of WVD in dealing with multi-point targets and extended targets are also discussed. The computer simulation results illustrate its availability.展开更多
Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Ind...Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.展开更多
文摘The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.
基金Project(61105020)supported by the National Natural Science Foundation of ChinaProject(13zxtk08)supported by the Key Research Platform for Research Projects of Southwest University of Science and Technology,China
文摘The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.
基金The National Science and Technology Support Project under contract No.2014BAB12B02the Natural Science Foundation of Liaoning Province under contract No.201602042
文摘Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately.
基金supported by the Natural Science Foundation of Sichuan Province of China under Grant No.2022NSFSC40574partially supported by the National Natural Science Foundation of China under Grants No.61571096 and No.61775030.
文摘In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.
文摘The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.
文摘Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large scene image acquisition capabilities of SAR.However,due to strong speckle noise and low signal-to-noise ratio,it is difficult to extract representative features of target from SAR images,which greatly inhibits the effectiveness of traditional methods.In order to address the above problems,a framework called contextual rotation region-based convolutional neural network(RCNN) with multilayer fusion is proposed in this paper.Specifically,aimed to enable RCNN to perform target detection in large scene SAR images efficiently,maximum sliding strategy is applied to crop the large scene image into a series of sub-images before RCNN.Instead of using the highest-layer output for proposal generation and target detection,fusion feature maps with high resolution and rich semantic information are constructed by multilayer fusion strategy.Then,we put forwards rotation anchors to predict the minimum circumscribed rectangle of targets to reduce redundant detection region.Furthermore,shadow areas serve as contextual features to provide extraneous information for the detector identify and locate targets accurately.Experimental results on the simulated large scene SAR image dataset show that the proposed method achieves a satisfactory performance in large scene SAR target detection.
文摘The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture distribution to approximate and estimate multi-modal histogram of SAR image. Then, based on the principle of MAP, when a priori probability is both unknown and learned respectively, the sample pixels are classified into different classes c = {target,shadow, background}. Last, it compares the results of two different target detections. Simulation results preferably indicate that the presented algorithm is fast and robust, with the learned a priori probability, an approach to target detection is reliable and promising.
文摘In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection.
基金Supported by the National Natural Science Foundation of China (No. 61032001, No.61002045)
文摘Designing detection algorithms with high efficiency for Synthetic Aperture Radar(SAR) imagery is essential for the operator SAR Automatic Target Recognition(ATR) system.This work abandons the detection strategy of visiting every pixel in SAR imagery as done in many traditional detection algorithms,and introduces the gridding and fusion idea of different texture fea-tures to realize fast target detection.It first grids the original SAR imagery,yielding a set of grids to be classified into clutter grids and target grids,and then calculates the texture features in each grid.By fusing the calculation results,the target grids containing potential maneuvering targets are determined.The dual threshold segmentation technique is imposed on target grids to obtain the regions of interest.The fused texture features,including local statistics features and Gray-Level Co-occurrence Matrix(GLCM),are investigated.The efficiency and superiority of our proposed algorithm were tested and verified by comparing with existing fast de-tection algorithms using real SAR data.The results obtained from the experiments indicate the promising practical application val-ue of our study.
基金supported by the National Natural Science Foundation of China(6107113961471019+5 种基金61171122)the Aeronautical Science Foundation of China(20142051022)the Foundation of ATR Key Lab(C80264)the National Natural Science Foundation of China(NNSFC)under the RSE-NNSFC Joint Project(2012-2014)(61211130210)with Beihang Universitythe RSE-NNSFC Joint Project(2012-2014)(61211130309)with Anhui Universitythe"Sino-UK Higher Education Research Partnership for Ph D Studies"Joint Project(2013-2015)
文摘Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.
基金supported by the National Natural Science Foundation of China(6107113961171122)+1 种基金the Fundamental Research Funds for the Central Universities"New Star in Blue Sky" Program Foundation the Foundation of ATR Key Lab
文摘When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires block-by-block estimation of clutter models and FCM clustering converges to local optimum. To address these problems, this paper pro-poses a new detection algorithm: knowledge-based combined with improved genetic algorithm-fuzzy C-means (GA-FCM) algorithm. Firstly, the algorithm takes target region's maximum and average intensity, area, length of long axis and long-to-short axis ratio of the external ellipse as factors which influence the target appearing probabil- ity. The knowledge-based detection algorithm can produce preprocess results without the need of estimation of clutter models as CFAR does. Afterward the GA-FCM algorithm is improved to cluster pre-process results. It has advantages of incorporating global optimizing ability of GA and local optimizing ability of FCM, which will further eliminate false alarms and get better results. The effectiveness of the proposed technique is experimentally validated with real SAR images.
基金supported by the National Key R&D Program of China(2017YFB0502700)the National Natural Science Foundation of China(61490693+3 种基金61771043)the High-Resolution Earth Observation Systems(41-Y20A14-9001-15/1630-Y20A12-9004-15/1630-Y20A10-9001-15/16)
文摘To automatically detect oil tanks in polarimetric synthetic aperture radar(SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is detected to locate the region of interest(ROI) of oil tanks. Then all suspicious targets in the ROI are extracted by the segmentation of strong scattering targets and the classifier of H/α. The template targets are selected from the suspicious targets by the combination of a proposed circular degree parameter and the similarity parameter(SP) of the polarimetric coherency matrix. Finally, oil tanks are detected according to the statistics of the similarity parameter between each suspicious target and template targets in ROI. Polarimetric SAR data acquired by RADARSAT-2 over Berkeley and Singapore areas are used for testing. Experiment results show that most of the targets are correctly detected and the overall detection rate is close to 80%.The false rate is effectively reduced by the proposed algorithm compared with the method without T-shaped harbor recognition.
基金supported by the National Natural Science Foundation of China(Nos.61771027,61071139,61471019,61671035)supported in part under the Royal Society of Edinburgh-National Natural Science Foundation of China(RSE-NNSFC)Joint Project(2017–2019)(No.6161101383)with China University of Petroleum(Huadong)partially supported by the UK Engineering and Physical Sciences Research Council(EPSRC)(Nos.EP/I009310/1,EP/M026981/1)
文摘Synthetic Aperture Radar(SAR) imaging systems have been widely used in civil and military fields due to their all-weather and all-day abilities and various other advantages. However, due to image data exponentially increasing, there is a need for novel automatic target detection and recognition technologies. In recent years, the visual attention mechanism in the visual system has helped humans effectively deal with complex visual signals. In particular, biologically inspired top-down attention models have garnered much attention recently. This paper presents a visual attention model for SAR target detection, comprising a bottom-up stage and top-down process.In the bottom-up step, the Itti model is improved based on the difference between SAR and optical images. The top-down step fully utilizes prior information to further detect targets. Extensive detection experiments carried out on the benchmark Moving and Stationary Target Acquisition and Recognition(MSTAR) dataset show that, compared with typical visual models and other popular detection methods, our model has increased ability and robustness for SAR target detection, under a range of Signal to Clutter Ratio(SCR) conditions and scenes. In addition, results obtained using only the bottom-up stage are inferior to those of the proposed method, further demonstrating the effectiveness and rationality of a top-down strategy. In summary, our proposed visual attention method can be considered a potential benchmark resource for the SAR research community.
文摘Based on a joint time-frequency two dimensional processing, this paper proposes a method for the detection and imaging of moving targets SAR by using Wigner-Ville Distribution (WVD). It is a parameter estimation method to generate a high resolution image. The problem of WVD in dealing with multi-point targets and extended targets are also discussed. The computer simulation results illustrate its availability.
基金Supported by the National Natural Science Foundation of China (NSFC) (No.60772103)China National Key Laboratory of Microwave Imaging Technology Foundation (No.9140C1903050804)
文摘Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.