In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an...In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection.展开更多
The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of ...The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.展开更多
The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the syn...The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.展开更多
For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics o...For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.展开更多
Ship detection using synthetic aperture radar(SAR)plays an important role in marine applications.The existing methods are capable of quickly obtaining many candidate targets,but numerous non-ship objects may be wrongl...Ship detection using synthetic aperture radar(SAR)plays an important role in marine applications.The existing methods are capable of quickly obtaining many candidate targets,but numerous non-ship objects may be wrongly detected in complex backgrounds.These non-ship false alarms can be excluded by training discriminators,and the desired accuracy is obtained with enough verified samples.However,the reliable verification of targets in large-scene SAR images still inevitably requires manual interpretation,which is difficult and time consuming.To address this issue,a semisupervised heterogeneous ensemble ship target discrimination method based on a tri-training scheme is proposed to take advantage of the plentiful candidate targets.Specifically,various features commonly used in SAR image target discrimination are extracted,and several acknowledged classification models and their classic variants are investigated.Multiple discriminators are constructed by dividing these features into different groups and pairing them with each model.Then,the performance of all the discriminators is tested,and better discriminators are selected for implementing the semisupervised training process.These strategies enhance the diversity and reliability of the discriminators,and their heterogeneous ensemble makes more correct judgments on candidate targets,which facilitates further positive training.Experimental results demonstrate that the proposed method outperforms traditional tritraining.展开更多
In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)in...In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.展开更多
Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting...Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.展开更多
Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the li...Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the line integral, the WVH transform was derived by combining the Wigner Ville distribution (WVD) and the Hough transform (HT) together. The new transform was then verified with computer by the simulated SAR echoes. Results and Conclusion The correctness and the validity of the WVH transform were proved by the computer simulation. Compared with the conventional WVD HT method, the new approach based on the WVHT can simplify the processing procedure, it can translate the chirp echoes of multi targets of SAR from the time domain into the parameter space directly, while suppressing the cross terms of WVD and estimating the motion coefficients for the final imaging. It is obvious that the WVH transform can be also used in other cases for the chirp signal detection.展开更多
The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving t...The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.展开更多
Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large...Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large scene image acquisition capabilities of SAR.However,due to strong speckle noise and low signal-to-noise ratio,it is difficult to extract representative features of target from SAR images,which greatly inhibits the effectiveness of traditional methods.In order to address the above problems,a framework called contextual rotation region-based convolutional neural network(RCNN) with multilayer fusion is proposed in this paper.Specifically,aimed to enable RCNN to perform target detection in large scene SAR images efficiently,maximum sliding strategy is applied to crop the large scene image into a series of sub-images before RCNN.Instead of using the highest-layer output for proposal generation and target detection,fusion feature maps with high resolution and rich semantic information are constructed by multilayer fusion strategy.Then,we put forwards rotation anchors to predict the minimum circumscribed rectangle of targets to reduce redundant detection region.Furthermore,shadow areas serve as contextual features to provide extraneous information for the detector identify and locate targets accurately.Experimental results on the simulated large scene SAR image dataset show that the proposed method achieves a satisfactory performance in large scene SAR target detection.展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is ba...Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.展开更多
Based on a joint time-frequency two dimensional processing, this paper proposes a method for the detection and imaging of moving targets SAR by using Wigner-Ville Distribution (WVD). It is a parameter estimation metho...Based on a joint time-frequency two dimensional processing, this paper proposes a method for the detection and imaging of moving targets SAR by using Wigner-Ville Distribution (WVD). It is a parameter estimation method to generate a high resolution image. The problem of WVD in dealing with multi-point targets and extended targets are also discussed. The computer simulation results illustrate its availability.展开更多
When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires bloc...When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires block-by-block estimation of clutter models and FCM clustering converges to local optimum. To address these problems, this paper pro-poses a new detection algorithm: knowledge-based combined with improved genetic algorithm-fuzzy C-means (GA-FCM) algorithm. Firstly, the algorithm takes target region's maximum and average intensity, area, length of long axis and long-to-short axis ratio of the external ellipse as factors which influence the target appearing probabil- ity. The knowledge-based detection algorithm can produce preprocess results without the need of estimation of clutter models as CFAR does. Afterward the GA-FCM algorithm is improved to cluster pre-process results. It has advantages of incorporating global optimizing ability of GA and local optimizing ability of FCM, which will further eliminate false alarms and get better results. The effectiveness of the proposed technique is experimentally validated with real SAR images.展开更多
The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture d...The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture distribution to approximate and estimate multi-modal histogram of SAR image. Then, based on the principle of MAP, when a priori probability is both unknown and learned respectively, the sample pixels are classified into different classes c = {target,shadow, background}. Last, it compares the results of two different target detections. Simulation results preferably indicate that the presented algorithm is fast and robust, with the learned a priori probability, an approach to target detection is reliable and promising.展开更多
In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when j...In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when just a small number of training data are available.In order to solve the problems of overfitting and an unsatisfied performance of the network model in the small sample remote sensing image target recognition,in this paper,we uses a deep residual network to autonomously acquire image features and proposes the Deep Feature Bayesian Classifier model(RBnet)for SAR image target recognition.In the RBnet,a Bayesian classifier is used to improve the effect of SAR image target recognition and improve the accuracy when the training data is limited.The experimental results on MSTAR dataset show that the RBnet can fully exploit effective information in limited samples and recognize the target of the SAR images more accurately.Compared with other state-of-the-art methods,our method offers significant recognition accuracy improvements under limited training data.Noted that theRBnet is moderately difficult to implement and has the value of popularization and application in engineering application scenarios in the field of small-sample remote sensing target recognition and recognition.展开更多
A new constant false alarm rate (CFAR) target detector for synthetic aperture radar (SAR) images is developed. For each pixel under test, both the local probability density function (PDF) of the pixel and the cl...A new constant false alarm rate (CFAR) target detector for synthetic aperture radar (SAR) images is developed. For each pixel under test, both the local probability density function (PDF) of the pixel and the clutter PDF in the reference window are estimated by the non-parametric density estimation. The target detector is defined as the mean square error (MSE) distance between the two PDFs. The CFAR detection in SAR images having multiplicative noise is achieved by adaptive kernel bandwidth proportional to the clutter level. In addition, for obtaining a threshold with respect to a given probability of false alarm (PFA), an unsupervised null distribution fitting method with outlier rejection is proposed. The effectiveness of the proposed target detector is demonstrated by the experiment result using the RADATSAT-2 SAR image.展开更多
The issue of small-angle maneuvering targets inverse synthetic aperture radar(ISAR)imaging has been successfully addressed by popular motion compensation algorithms.However,when the target’s rotational velocity is su...The issue of small-angle maneuvering targets inverse synthetic aperture radar(ISAR)imaging has been successfully addressed by popular motion compensation algorithms.However,when the target’s rotational velocity is sufficiently high during the dwell time of the radar,such compensation algorithms cannot obtain a high quality image.This paper proposes an ISAR imaging algorithm based on keystone transform and deep learning algorithm.The keystone transform is used to coarsely compensate for the target’s rotational motion and translational motion,and the deep learning algorithm is used to achieve a super-resolution image.The uniformly distributed point target data are used as the data set of the training u-net network.In addition,this method does not require estimating the motion parameters of the target,which simplifies the algorithm steps.Finally,several experiments are performed to demonstrate the effectiveness of the proposed algorithm.展开更多
Synthetic aperture radar(SAR) automatic target recognition is an important application in SAR.How to extract features has restricted the application of SAR technology seriously.In this paper,a new feature extraction m...Synthetic aperture radar(SAR) automatic target recognition is an important application in SAR.How to extract features has restricted the application of SAR technology seriously.In this paper,a new feature extraction method for SAR automatic target recognition based on maximum interclass distance is proposed,which integrates class and neighborhood information.This method can reinforce discriminative power using maximum interclass distance,so it can improve recognition rate effectively.展开更多
Inverse synthetic aperture radar (ISAR) imaging of ship targets is very important in the national defense. For the high maneuverability of ship targets, the Doppler frequency shift of the received signal is time-var...Inverse synthetic aperture radar (ISAR) imaging of ship targets is very important in the national defense. For the high maneuverability of ship targets, the Doppler frequency shift of the received signal is time-varying, which will degrade the ISAR image quality for the traditional range-Doppler (RD) algorithm. In this paper, the received signal in a range bin is characterized as the multi-component polynomial phase signal (PPS) after the motion compensation, and a new approach of time-frequency represen- tation, generalized polynomial Wigner-Ville distribution (GPWVD), is proposed for the azimuth focusing. The GPWVD is based on the exponential matched-phase (EMP) principle. Compared with the conventional polynomial Wigner-Ville distribution (PWVD), the EMP principle transfers the non-integer lag coefficients of the PWVD to the position of the exponential of the signal, and the interpolation can be avoided completely. For the GPWVD, the cross-terms between multi-component signals can be reduced by decomposing the GPWVD into the convolution of Wigner-Ville distribution (WVD) and the spectrum of phase adjust functions. The GPWVD is used in the ISAR imaging of ship targets, and the high quality instantaneous ISAR images can be obtained. Simulation results and measurement data demonstrate the effectiveness of the proposed new method.展开更多
文摘In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection.
文摘The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.
基金Project(61105020)supported by the National Natural Science Foundation of ChinaProject(13zxtk08)supported by the Key Research Platform for Research Projects of Southwest University of Science and Technology,China
文摘The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.
基金Project(61360020102) supported by the National Basic Research Development Program of China
文摘For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.
基金The National Natural Science Foundation of China under contract No.61971455.
文摘Ship detection using synthetic aperture radar(SAR)plays an important role in marine applications.The existing methods are capable of quickly obtaining many candidate targets,but numerous non-ship objects may be wrongly detected in complex backgrounds.These non-ship false alarms can be excluded by training discriminators,and the desired accuracy is obtained with enough verified samples.However,the reliable verification of targets in large-scene SAR images still inevitably requires manual interpretation,which is difficult and time consuming.To address this issue,a semisupervised heterogeneous ensemble ship target discrimination method based on a tri-training scheme is proposed to take advantage of the plentiful candidate targets.Specifically,various features commonly used in SAR image target discrimination are extracted,and several acknowledged classification models and their classic variants are investigated.Multiple discriminators are constructed by dividing these features into different groups and pairing them with each model.Then,the performance of all the discriminators is tested,and better discriminators are selected for implementing the semisupervised training process.These strategies enhance the diversity and reliability of the discriminators,and their heterogeneous ensemble makes more correct judgments on candidate targets,which facilitates further positive training.Experimental results demonstrate that the proposed method outperforms traditional tritraining.
基金supported by the Natural Science Foundation of Sichuan Province of China under Grant No.2022NSFSC40574partially supported by the National Natural Science Foundation of China under Grants No.61571096 and No.61775030.
文摘In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.
基金supported by the National Natural Science Foundation of China(6107113961471019+5 种基金61171122)the Aeronautical Science Foundation of China(20142051022)the Foundation of ATR Key Lab(C80264)the National Natural Science Foundation of China(NNSFC)under the RSE-NNSFC Joint Project(2012-2014)(61211130210)with Beihang Universitythe RSE-NNSFC Joint Project(2012-2014)(61211130309)with Anhui Universitythe"Sino-UK Higher Education Research Partnership for Ph D Studies"Joint Project(2013-2015)
文摘Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.
文摘Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the line integral, the WVH transform was derived by combining the Wigner Ville distribution (WVD) and the Hough transform (HT) together. The new transform was then verified with computer by the simulated SAR echoes. Results and Conclusion The correctness and the validity of the WVH transform were proved by the computer simulation. Compared with the conventional WVD HT method, the new approach based on the WVHT can simplify the processing procedure, it can translate the chirp echoes of multi targets of SAR from the time domain into the parameter space directly, while suppressing the cross terms of WVD and estimating the motion coefficients for the final imaging. It is obvious that the WVH transform can be also used in other cases for the chirp signal detection.
文摘The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.
文摘Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large scene image acquisition capabilities of SAR.However,due to strong speckle noise and low signal-to-noise ratio,it is difficult to extract representative features of target from SAR images,which greatly inhibits the effectiveness of traditional methods.In order to address the above problems,a framework called contextual rotation region-based convolutional neural network(RCNN) with multilayer fusion is proposed in this paper.Specifically,aimed to enable RCNN to perform target detection in large scene SAR images efficiently,maximum sliding strategy is applied to crop the large scene image into a series of sub-images before RCNN.Instead of using the highest-layer output for proposal generation and target detection,fusion feature maps with high resolution and rich semantic information are constructed by multilayer fusion strategy.Then,we put forwards rotation anchors to predict the minimum circumscribed rectangle of targets to reduce redundant detection region.Furthermore,shadow areas serve as contextual features to provide extraneous information for the detector identify and locate targets accurately.Experimental results on the simulated large scene SAR image dataset show that the proposed method achieves a satisfactory performance in large scene SAR target detection.
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.
文摘Based on a joint time-frequency two dimensional processing, this paper proposes a method for the detection and imaging of moving targets SAR by using Wigner-Ville Distribution (WVD). It is a parameter estimation method to generate a high resolution image. The problem of WVD in dealing with multi-point targets and extended targets are also discussed. The computer simulation results illustrate its availability.
基金supported by the National Natural Science Foundation of China(6107113961171122)+1 种基金the Fundamental Research Funds for the Central Universities"New Star in Blue Sky" Program Foundation the Foundation of ATR Key Lab
文摘When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires block-by-block estimation of clutter models and FCM clustering converges to local optimum. To address these problems, this paper pro-poses a new detection algorithm: knowledge-based combined with improved genetic algorithm-fuzzy C-means (GA-FCM) algorithm. Firstly, the algorithm takes target region's maximum and average intensity, area, length of long axis and long-to-short axis ratio of the external ellipse as factors which influence the target appearing probabil- ity. The knowledge-based detection algorithm can produce preprocess results without the need of estimation of clutter models as CFAR does. Afterward the GA-FCM algorithm is improved to cluster pre-process results. It has advantages of incorporating global optimizing ability of GA and local optimizing ability of FCM, which will further eliminate false alarms and get better results. The effectiveness of the proposed technique is experimentally validated with real SAR images.
文摘The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture distribution to approximate and estimate multi-modal histogram of SAR image. Then, based on the principle of MAP, when a priori probability is both unknown and learned respectively, the sample pixels are classified into different classes c = {target,shadow, background}. Last, it compares the results of two different target detections. Simulation results preferably indicate that the presented algorithm is fast and robust, with the learned a priori probability, an approach to target detection is reliable and promising.
基金funded by the National Key R&D Program of China(2021YFC3320302).
文摘In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when just a small number of training data are available.In order to solve the problems of overfitting and an unsatisfied performance of the network model in the small sample remote sensing image target recognition,in this paper,we uses a deep residual network to autonomously acquire image features and proposes the Deep Feature Bayesian Classifier model(RBnet)for SAR image target recognition.In the RBnet,a Bayesian classifier is used to improve the effect of SAR image target recognition and improve the accuracy when the training data is limited.The experimental results on MSTAR dataset show that the RBnet can fully exploit effective information in limited samples and recognize the target of the SAR images more accurately.Compared with other state-of-the-art methods,our method offers significant recognition accuracy improvements under limited training data.Noted that theRBnet is moderately difficult to implement and has the value of popularization and application in engineering application scenarios in the field of small-sample remote sensing target recognition and recognition.
基金supported by the National Natural Science Foundation of China (40871157 41171317)the Foundation of Advance Research of Science and Technology for Chinese National Defence(9140C620201902)
文摘A new constant false alarm rate (CFAR) target detector for synthetic aperture radar (SAR) images is developed. For each pixel under test, both the local probability density function (PDF) of the pixel and the clutter PDF in the reference window are estimated by the non-parametric density estimation. The target detector is defined as the mean square error (MSE) distance between the two PDFs. The CFAR detection in SAR images having multiplicative noise is achieved by adaptive kernel bandwidth proportional to the clutter level. In addition, for obtaining a threshold with respect to a given probability of false alarm (PFA), an unsupervised null distribution fitting method with outlier rejection is proposed. The effectiveness of the proposed target detector is demonstrated by the experiment result using the RADATSAT-2 SAR image.
基金This work was supported by the National Natural Science Foundation of China(61571388,61871465,62071414)the Project of Introducing Overseas Students in Hebei Province(C20200367).
文摘The issue of small-angle maneuvering targets inverse synthetic aperture radar(ISAR)imaging has been successfully addressed by popular motion compensation algorithms.However,when the target’s rotational velocity is sufficiently high during the dwell time of the radar,such compensation algorithms cannot obtain a high quality image.This paper proposes an ISAR imaging algorithm based on keystone transform and deep learning algorithm.The keystone transform is used to coarsely compensate for the target’s rotational motion and translational motion,and the deep learning algorithm is used to achieve a super-resolution image.The uniformly distributed point target data are used as the data set of the training u-net network.In addition,this method does not require estimating the motion parameters of the target,which simplifies the algorithm steps.Finally,several experiments are performed to demonstrate the effectiveness of the proposed algorithm.
基金supported in part by the National High-tech Research and Development Program("863"Program)of China(Grant No.2009AA12Z106)
文摘Synthetic aperture radar(SAR) automatic target recognition is an important application in SAR.How to extract features has restricted the application of SAR technology seriously.In this paper,a new feature extraction method for SAR automatic target recognition based on maximum interclass distance is proposed,which integrates class and neighborhood information.This method can reinforce discriminative power using maximum interclass distance,so it can improve recognition rate effectively.
基金supported by the National Natural Science Foundation of China (61001166)the Specialized Research Fund for the Doctoral Program of Higher Education (20092302120002)+3 种基金the Aerospace Support Fund (2011-HT-HGD-16)the Fundamental Research Funds for the Central Universities (HIT.BRETIII.201207)the Postdoctoral ScienceResearch Developmental Foundation of Heilongjiang Province (LBHQ11092)the Heilongjiang Postdoctoral Specialized Research Fund
文摘Inverse synthetic aperture radar (ISAR) imaging of ship targets is very important in the national defense. For the high maneuverability of ship targets, the Doppler frequency shift of the received signal is time-varying, which will degrade the ISAR image quality for the traditional range-Doppler (RD) algorithm. In this paper, the received signal in a range bin is characterized as the multi-component polynomial phase signal (PPS) after the motion compensation, and a new approach of time-frequency represen- tation, generalized polynomial Wigner-Ville distribution (GPWVD), is proposed for the azimuth focusing. The GPWVD is based on the exponential matched-phase (EMP) principle. Compared with the conventional polynomial Wigner-Ville distribution (PWVD), the EMP principle transfers the non-integer lag coefficients of the PWVD to the position of the exponential of the signal, and the interpolation can be avoided completely. For the GPWVD, the cross-terms between multi-component signals can be reduced by decomposing the GPWVD into the convolution of Wigner-Ville distribution (WVD) and the spectrum of phase adjust functions. The GPWVD is used in the ISAR imaging of ship targets, and the high quality instantaneous ISAR images can be obtained. Simulation results and measurement data demonstrate the effectiveness of the proposed new method.