Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile streng...Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.展开更多
Given that the development of scour downstream of hydraulic structures increases the risk of structural damage,it is important to find cost-effective and environmental approaches to reduce this risk.This study aimed t...Given that the development of scour downstream of hydraulic structures increases the risk of structural damage,it is important to find cost-effective and environmental approaches to reduce this risk.This study aimed to experimentally evaluate the effect of synthetic fibers on the scour profile downstream of a sluice gate with a rigid apron.Experiments were performed with the same Froude number and with different weight percentages of synthetic fibers on both non-cohesive and cohesive sediments.One uniform sand was used as the non-cohesive sediment,and three different cohesive sediments were prepared by mixing different percentages of kaolinite soil with the used sand.The scouring experiments showed that the presence of synthetic fibers did not considerably affect the scour hole dimension in non-cohesive sediments.Evaluation of the scour in the cohesive sediments in silty sand(SM)texture found that an increase in the percentage of silt reduced the scour hole dimensions.The effect of synthetic fibers on scour of SM-texture-based sediments was also investigated,and the results showed that increasing the percentage of synthetic fibers decreased the scour hole dimensions.In addition,the cohesive sediments in SM texture did not have a similar non-dimensional scour profile,and the presence of synthetic fibers did not significantly affect the scour hole.展开更多
Based on a series of tests and engineering examples, a study on the mechanical behavior of synthetic fiber reinforced concrete is presented. As a result, when fiber content varies from 0.03% to 0.14%, though the synth...Based on a series of tests and engineering examples, a study on the mechanical behavior of synthetic fiber reinforced concrete is presented. As a result, when fiber content varies from 0.03% to 0.14%, though the synthetic fiber has more influence on low strength-grade concrete than on high strength-grade concrete, it makes little difference to the mechanical behavior of concrete in general. Test results and applications in construction show that the synthetic fiber can enhance the energy-absorbing capacity and deformation performance of concrete effectively.展开更多
Usage of fiber reinforced concrete to replace shear reinforcement has become more common in the precast industry in recent years. In some cases, the use of steel fibers could be problematic because of corrosion, hence...Usage of fiber reinforced concrete to replace shear reinforcement has become more common in the precast industry in recent years. In some cases, the use of steel fibers could be problematic because of corrosion, hence, synthetic material could be a suitable alternative material solution. Thus, it would appear logical to undertake a comparison of these fibers' load bearing capacity to determine suitability in each case. In this paper, the bending and the shear tests of four large-scale and prestressed beams made of steel or synthetic fiber reinforced concrete without stirrups are presented. The post-cracking residual tensile strength diagram of the fibers, according to RILEM (International Union of Laboratories and Experts in Construction Materials, Systems and Structures) TC162, is given and the experimental behavior of the fiber solutions is compared. The modified fracture energy method is used to define an advanced material model for the fiber reinforced concrete in the finite element analysis. The numerical calculations and the test results are compared in terms of crack propagation and the loading-deflect'ion process. As a consequence, both steel and synthetic fibers seem to be good alternatives to replace the stirrups. However, the behavior of each fiber is not the same. The numerical calculation provided a good approximation for the real scale tests.展开更多
Numerous studies showed that synthetic fibers are effective for reinforcing the mechanical performance of the asphalt mixture due to their high strength properties,ductility,and durability characteristics.In this pape...Numerous studies showed that synthetic fibers are effective for reinforcing the mechanical performance of the asphalt mixture due to their high strength properties,ductility,and durability characteristics.In this paper,the objective is to present a review of the reinforcement effect of synthetic fiber on the mechanical performance of the asphalt mixture.This paper reviews the relevant literature on the characterizations and applications of synthetic fibers to improve different mechanical properties of asphalt mixes,which can provide a reference for the applications and development of synthetic fibers in asphalt pavement.The characteristics of common synthetic fibers are introduced and the utilization of synthetic fibers in asphalt mixture is discussed.Different surface treatment methods for fiber are reviewed and it is found that surface treatment can improve the performance of the synthetic fibers in asphalt mixtures,especially the chemical surface treatment method.The influence of synthetic fiber addition on the mechanical properties of the asphalt concrete such as rutting resistance,tensile strength,water stability performance,and cracking resistance are then discussed.The research results show that aramid,glass,and polyester fibers improve the fatigue cracking resistance of asphalt mixture.Polyester fibers,polyamide fibers,and carbon fibers are used to improve resistance to the permanent deformation of asphalt pavement.展开更多
Quantitative measurement of the cutter blade sharpness is yet a difficult problem, since so far there has been no appropriate testing method. In this paper, a technique is introduced for measuring the cutter blade sha...Quantitative measurement of the cutter blade sharpness is yet a difficult problem, since so far there has been no appropriate testing method. In this paper, a technique is introduced for measuring the cutter blade sharpness at different testing conditions. The sharpness of cutter blades are measured by detecting the force to cut off the fiber with a material strength testing machine, and the results indicated that the technique could be used to measure the cutter blade sharpness satisfactorily. The fiber tension and downward speed of cutter blades are recommended to be 4.9 cN and 50 mm/min respectively for cutting 0.22 mm PET fiber.展开更多
文摘Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.
文摘Given that the development of scour downstream of hydraulic structures increases the risk of structural damage,it is important to find cost-effective and environmental approaches to reduce this risk.This study aimed to experimentally evaluate the effect of synthetic fibers on the scour profile downstream of a sluice gate with a rigid apron.Experiments were performed with the same Froude number and with different weight percentages of synthetic fibers on both non-cohesive and cohesive sediments.One uniform sand was used as the non-cohesive sediment,and three different cohesive sediments were prepared by mixing different percentages of kaolinite soil with the used sand.The scouring experiments showed that the presence of synthetic fibers did not considerably affect the scour hole dimension in non-cohesive sediments.Evaluation of the scour in the cohesive sediments in silty sand(SM)texture found that an increase in the percentage of silt reduced the scour hole dimensions.The effect of synthetic fibers on scour of SM-texture-based sediments was also investigated,and the results showed that increasing the percentage of synthetic fibers decreased the scour hole dimensions.In addition,the cohesive sediments in SM texture did not have a similar non-dimensional scour profile,and the presence of synthetic fibers did not significantly affect the scour hole.
文摘Based on a series of tests and engineering examples, a study on the mechanical behavior of synthetic fiber reinforced concrete is presented. As a result, when fiber content varies from 0.03% to 0.14%, though the synthetic fiber has more influence on low strength-grade concrete than on high strength-grade concrete, it makes little difference to the mechanical behavior of concrete in general. Test results and applications in construction show that the synthetic fiber can enhance the energy-absorbing capacity and deformation performance of concrete effectively.
文摘Usage of fiber reinforced concrete to replace shear reinforcement has become more common in the precast industry in recent years. In some cases, the use of steel fibers could be problematic because of corrosion, hence, synthetic material could be a suitable alternative material solution. Thus, it would appear logical to undertake a comparison of these fibers' load bearing capacity to determine suitability in each case. In this paper, the bending and the shear tests of four large-scale and prestressed beams made of steel or synthetic fiber reinforced concrete without stirrups are presented. The post-cracking residual tensile strength diagram of the fibers, according to RILEM (International Union of Laboratories and Experts in Construction Materials, Systems and Structures) TC162, is given and the experimental behavior of the fiber solutions is compared. The modified fracture energy method is used to define an advanced material model for the fiber reinforced concrete in the finite element analysis. The numerical calculations and the test results are compared in terms of crack propagation and the loading-deflect'ion process. As a consequence, both steel and synthetic fibers seem to be good alternatives to replace the stirrups. However, the behavior of each fiber is not the same. The numerical calculation provided a good approximation for the real scale tests.
基金This project was supported by Key Research and Development Project of Shaanxi Province(2022GY-427)The first author also gratefully acknowledges the financial support from China Scholarship Council(202006560071).
文摘Numerous studies showed that synthetic fibers are effective for reinforcing the mechanical performance of the asphalt mixture due to their high strength properties,ductility,and durability characteristics.In this paper,the objective is to present a review of the reinforcement effect of synthetic fiber on the mechanical performance of the asphalt mixture.This paper reviews the relevant literature on the characterizations and applications of synthetic fibers to improve different mechanical properties of asphalt mixes,which can provide a reference for the applications and development of synthetic fibers in asphalt pavement.The characteristics of common synthetic fibers are introduced and the utilization of synthetic fibers in asphalt mixture is discussed.Different surface treatment methods for fiber are reviewed and it is found that surface treatment can improve the performance of the synthetic fibers in asphalt mixtures,especially the chemical surface treatment method.The influence of synthetic fiber addition on the mechanical properties of the asphalt concrete such as rutting resistance,tensile strength,water stability performance,and cracking resistance are then discussed.The research results show that aramid,glass,and polyester fibers improve the fatigue cracking resistance of asphalt mixture.Polyester fibers,polyamide fibers,and carbon fibers are used to improve resistance to the permanent deformation of asphalt pavement.
文摘Quantitative measurement of the cutter blade sharpness is yet a difficult problem, since so far there has been no appropriate testing method. In this paper, a technique is introduced for measuring the cutter blade sharpness at different testing conditions. The sharpness of cutter blades are measured by detecting the force to cut off the fiber with a material strength testing machine, and the results indicated that the technique could be used to measure the cutter blade sharpness satisfactorily. The fiber tension and downward speed of cutter blades are recommended to be 4.9 cN and 50 mm/min respectively for cutting 0.22 mm PET fiber.