The Proterozoic Aravalli-Delhi orogenic complex hosts a large number of economically important stratabound base metal sulphide deposits. In the present work, rock samples taken from Outcrop and Underground Mine of Sin...The Proterozoic Aravalli-Delhi orogenic complex hosts a large number of economically important stratabound base metal sulphide deposits. In the present work, rock samples taken from Outcrop and Underground Mine of Sindeskar Kalan, Vedanta Group, Rajpura Dariba-Bethumni Belt which is located at a distance of 76 kms from Udaipur city, Rajasthan have been studied. The chief litho units of the group which contain sulfide-bearing calc-silicate and graphite mica schist, dolomite marble, calc-biotite schist and quartzite are identified. An attempt has also been made to study/or hydrothermal in origin in the different types of fluid inclusions, hosted predominately in Geothermometry viz. heating and freezing study of entrapped palaeo-fluids (such as sedimentary and quartz host grain and a few in sphalerites). The quartz hosts are identified with four types of fluid inclusions, such as 1) monophase (gas/vapour), 2) gas-rich biphase, 3) liquid-rich biphase and 4) polyphase types. The primary types of fluid inclusions show that melting temperature of ice or depression freezing point (DFP) (ranging from -2.5°C to -7.2°C)/(salinity ranging from 4.5 - 13.25 wt% NaCl eq.) and temperature of homogenization into liquid phase (ranging from +188°C to +218°C) have been measured. Data from the fluid inclusions and salinity calculation (low salinity) reveal that rate of cooling is the important mechanism of ore deposition in the study area.展开更多
The Mokama granites are located in the Kibara belt (KIB) and hosts tin oxide group minerals (TOGM: Sn-W), and sulfide group minerals (SGM: Cu-Zn-Fe-As). The essential of Cu mineralization (non-economic deposit) is dis...The Mokama granites are located in the Kibara belt (KIB) and hosts tin oxide group minerals (TOGM: Sn-W), and sulfide group minerals (SGM: Cu-Zn-Fe-As). The essential of Cu mineralization (non-economic deposit) is disseminated inside the rock and consists of minerals (Raman, EPMA and metallographic microscopy) including chalcopyrite and bornite that are replaced by chalcocite and covellite, and the last also replaced later by malachite. The chemistry (XRF, LA-ICP-MS) of these peraluminous S-type leucogranites show SiO<sub>2</sub> (71 wt% - 79 wt%), ASI (1.4 - 3.1 molar), and are enriched in Rb (681 - 1000 ppm), Ta (12–151 ppm), Sn (43 - 142 ppm), Cu (10 - 4300 ppm), Zn (60 - 740 ppm), U (2.2 - 20.7 ppm) while depleted in Zr (20 - 31 ppm), Sr (20 - 69 ppm), Hf (1.3 - 2.0 ppm), Th (2.2 - 18.9 ppm), W (9 - 113 ppm), Pb (5 - 50 ppm), Ge (5 - 10 ppm), Cs (21 - 53 ppm) and Bi (0.6 - 17.4 ppm) and low ratios of (La/Yb) N, (Gd/Yb) N, (La/Sm) N). Fluid inclusion assemblages (FIAs) hosted in quartz in the Mokama granites show ranges of salinities of 4 - 23 wt% (NaCl equivalent) and homogenization temperatures (Th) of 190°C - 550°C. A boiling assemblage in the granite suggests a fluid phase separation occurred at about 380 - 610 bars, and this corresponds to apparent paleodepths of approximately 1 - 2 km (lithostatic model) or 3 - 5 km (hydrostatic model). FIAs hosted in TOGM such as cassiterite (salinities of 2 wt% - 10 wt% and Th of 220°C - 340°C) helped set up the possible temperature limit of SGM (Cu sulfide) precipitations that are estimated below 200°C.展开更多
文摘The Proterozoic Aravalli-Delhi orogenic complex hosts a large number of economically important stratabound base metal sulphide deposits. In the present work, rock samples taken from Outcrop and Underground Mine of Sindeskar Kalan, Vedanta Group, Rajpura Dariba-Bethumni Belt which is located at a distance of 76 kms from Udaipur city, Rajasthan have been studied. The chief litho units of the group which contain sulfide-bearing calc-silicate and graphite mica schist, dolomite marble, calc-biotite schist and quartzite are identified. An attempt has also been made to study/or hydrothermal in origin in the different types of fluid inclusions, hosted predominately in Geothermometry viz. heating and freezing study of entrapped palaeo-fluids (such as sedimentary and quartz host grain and a few in sphalerites). The quartz hosts are identified with four types of fluid inclusions, such as 1) monophase (gas/vapour), 2) gas-rich biphase, 3) liquid-rich biphase and 4) polyphase types. The primary types of fluid inclusions show that melting temperature of ice or depression freezing point (DFP) (ranging from -2.5°C to -7.2°C)/(salinity ranging from 4.5 - 13.25 wt% NaCl eq.) and temperature of homogenization into liquid phase (ranging from +188°C to +218°C) have been measured. Data from the fluid inclusions and salinity calculation (low salinity) reveal that rate of cooling is the important mechanism of ore deposition in the study area.
文摘The Mokama granites are located in the Kibara belt (KIB) and hosts tin oxide group minerals (TOGM: Sn-W), and sulfide group minerals (SGM: Cu-Zn-Fe-As). The essential of Cu mineralization (non-economic deposit) is disseminated inside the rock and consists of minerals (Raman, EPMA and metallographic microscopy) including chalcopyrite and bornite that are replaced by chalcocite and covellite, and the last also replaced later by malachite. The chemistry (XRF, LA-ICP-MS) of these peraluminous S-type leucogranites show SiO<sub>2</sub> (71 wt% - 79 wt%), ASI (1.4 - 3.1 molar), and are enriched in Rb (681 - 1000 ppm), Ta (12–151 ppm), Sn (43 - 142 ppm), Cu (10 - 4300 ppm), Zn (60 - 740 ppm), U (2.2 - 20.7 ppm) while depleted in Zr (20 - 31 ppm), Sr (20 - 69 ppm), Hf (1.3 - 2.0 ppm), Th (2.2 - 18.9 ppm), W (9 - 113 ppm), Pb (5 - 50 ppm), Ge (5 - 10 ppm), Cs (21 - 53 ppm) and Bi (0.6 - 17.4 ppm) and low ratios of (La/Yb) N, (Gd/Yb) N, (La/Sm) N). Fluid inclusion assemblages (FIAs) hosted in quartz in the Mokama granites show ranges of salinities of 4 - 23 wt% (NaCl equivalent) and homogenization temperatures (Th) of 190°C - 550°C. A boiling assemblage in the granite suggests a fluid phase separation occurred at about 380 - 610 bars, and this corresponds to apparent paleodepths of approximately 1 - 2 km (lithostatic model) or 3 - 5 km (hydrostatic model). FIAs hosted in TOGM such as cassiterite (salinities of 2 wt% - 10 wt% and Th of 220°C - 340°C) helped set up the possible temperature limit of SGM (Cu sulfide) precipitations that are estimated below 200°C.