期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator
1
作者 郑博睿 张倩 +2 位作者 赵太飞 宋国正 陈全龙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期172-178,共7页
The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is desig... The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies(1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies. 展开更多
关键词 plasma flow control plasma synthetic jet actuator pressure measurements numerical simulations
下载PDF
Jet Vectoring Control Using a Novel Synthetic Jet Actuator 被引量:13
2
作者 LUO Zhen-bing XIA Zhi-xun XIE Yong-gao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第3期193-201,共9页
A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, ... A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, which is able to perform the duty of either "push" or "pull", one novel synthetic jet actuator can fulfill both "push" and "pull" functions to vector the primary jet by shifting a slide block inside it. Therefore, because the new actuator possesses greater efficiency, it has potentiality to replace the existing one in various appli- cations, such as thrust vectoring and the reduction of thermal signature. Moreover, as the novel actuator can fulfill those functions that the existing one can not, it may well be expected to popularize it into more flow control systems. 展开更多
关键词 jet vectoring control synthetic jet actuator slide block flow control
下载PDF
Experimental Characterization of the Plasma Synthetic Jet Actuator 被引量:12
3
作者 金迪 李应红 +4 位作者 贾敏 宋慧敏 崔巍 孙权 李凡玉 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第10期1034-1040,共7页
The plasma synthetic jet is a novel active flow control method because of advantages such as fast response, high frequency and non-moving parts, and it has received more attention recently, especially regarding its ap... The plasma synthetic jet is a novel active flow control method because of advantages such as fast response, high frequency and non-moving parts, and it has received more attention recently, especially regarding its application to high-speed flow control. In this paper, the experimental characterization of the plasma synthetic jet actuator is investigated. The actuator consists of a copper anode, a tungsten cathode and a ceramic shell, and with these three parts a cavity can be formed inside the actuator. A pulsed-DC power supply was adopted to generate the arc plasma between the electrodes, through which the gas inside was heated and expanded from the orifice. Discharge parameters such as voltage and current were recorded, respectively, by voltage and current probes. The schlieren system was used for flow visualization, and jet velocities with different discharge parameters were measured. The schlieren images showed that the strength of plasma jets in a series of pulses varies from each other. Through velocity measurement, it is found that at a fixed frequency, the jet velocity hardly increases when the discharge voltage ranges from 16 kV to 20 kV. However, with the discharge voltage fixed, the jet velocity suddenly decreases when the pulse frequency rises above 500 Hz, whereas at other testing frequencies no such decrease was observed. The maximum jet velocity measured in the experiment was up to 110 m/s, which is believed to be effective for high-speed flow control. 展开更多
关键词 plasma aerodynamic actuation synthetic jet pulsed-DC discharge jet veloc-ity
下载PDF
Physical factors of primary jet vectoring control using synthetic jet actuators 被引量:3
4
作者 夏智勋 罗振兵 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第7期907-920,共14页
A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of ... A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of the pressure difference, the location and area of the lower pressure region, the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle. Three characteristic parameters of the synthetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region, the area of the lower pressure region, and the entrainment ratio of the synthetic jet flow to primary jet flow. The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum. Based upon analyzing the physical factors of jet vectoring control with synthetic jets, the source variables of the physical factors were established. A preparatory control model of jet vectoring using synthetic jet actuator was presented, and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values, and it indicates the optimal actuator is taking full advantage of the regulating function. 展开更多
关键词 flow control synthetic jet jet vectoring physical factor
下载PDF
Numerical investigation of flow over a two-dimensional square cylinder with a synthetic jet generated by a bi-frequency signal 被引量:2
5
作者 Yiran LU Yuan QU +1 位作者 Jiangsheng WANG Jinjun WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第10期1569-1584,共16页
The flow around a square cylinder with a synthetic jet positioned at the rear surface is numerically investigated with the unsteady Reynolds-averaged Navier-Stokes(URANS)method.Instead of the typical sinusoidal wave,a... The flow around a square cylinder with a synthetic jet positioned at the rear surface is numerically investigated with the unsteady Reynolds-averaged Navier-Stokes(URANS)method.Instead of the typical sinusoidal wave,a bi-frequency signal is adopted to generate the synthetic jet.The bi-frequency signal consists of a basic sinusoidal wave and a high-frequency wave.Cases with various amplitudes of the high-frequency component are simulated.It is found that synthetic jets actuated by bi-frequency signals can realize better drag reduction with lower energy consumption when appropriate parameter sets are applied.A new quantity,i.e.,the actuation efficiency Ae,is used to evaluate the controlling efficiency.The actuation efficiency Ae reaches its maximum of 0.2668 when the amplitude of the superposed high-frequency signal is 7.5%of the basic signal.The vortex structures and frequency characteristics are subsequently analyzed to investigate the mechanism of the optimization of the bi-frequency signal.When the synthetic jet is actuated by a single-frequency signal with a characteristic velocity of 0.112 m/s,the wake is asymmetrical.The alternative deflection of vortex pairs and the peak at half of the excitation frequency in the power spectral density(PSD)function are detected.In the bi-frequency cases with the same characteristic velocity,the wake gradually turns to be symmetrical with the increase in the amplitude of the high-frequency component.Meanwhile,the deflection of the vortex pairs and the peak at half of the excitation frequency gradually disappear as well. 展开更多
关键词 synthetic jet flow control signal superposition vortex dynamics
下载PDF
Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet 被引量:1
6
作者 李彪辉 王康俊 +1 位作者 王宇飞 姜楠 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期453-459,共7页
This work investigates the active control of a fully developed turbulent boundary layer by a submerged synthetic jet actuator.The impacts of the control are explored by measuring the streamwise velocities using partic... This work investigates the active control of a fully developed turbulent boundary layer by a submerged synthetic jet actuator.The impacts of the control are explored by measuring the streamwise velocities using particle image velocimetry,and reduction of the skin-friction drag is observed in a certain range downstream of the orifice.The coherent structure is defined and extracted using a spatial two-point correlation function,and it is found that the synthetic jet can efficiently reduce the streamwise scale of the coherent structure.Proper orthogonal decomposition analysis reveals that large-scale turbulent kinetic energy is significantly attenuated with the introduction of a synthetic jet.The conditional averaging results show that the induction effect of the prograde vortex on the low-speed fluid in a large-scale fluctuation velocity field is deadened,thereby suppressing the bursting process near the wall. 展开更多
关键词 synthetic jet active control turbulent boundary layer drag reduction
下载PDF
Numerical simulation on micromixer based on synthetic jet 被引量:1
7
作者 Minghou Liu Chen Xie Xiangfeng Zhang Yiliang Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第6期629-636,共8页
This paper studied a concept of micromixer with a synthetic jet placed at the bottom of a rectangular channel. Due to periodic ejections from and suctions into the channel, the fluids are mixed effectively. To study t... This paper studied a concept of micromixer with a synthetic jet placed at the bottom of a rectangular channel. Due to periodic ejections from and suctions into the channel, the fluids are mixed effectively. To study the effects of the inlet velocity, the jet intensity and frequency, and the jet location on the mixing efficiency, 3-D numerical simulations of the micromixer have been carried out. It has been found that when the jet intensity and the frequency are fixed, the mixing efficiency increases when Re 〈 50, and decreases when Re 〉 50 with the best mixing efficiency achieved at Re = 50. When the ratio of the jet velocity magnitude to the inlet velocity is taken as 10 and the jet frequency is 100 Hz, the mixing index reaches the highest value. It has also been found that to get better mixing efficiency, the orifice of the synthetic jet should be asymmetrically located away from the channel's centerline. 展开更多
关键词 MICROMIXER synthetic jet Mixing index
下载PDF
Influence of air pressure on the performance of plasma synthetic jet actuator 被引量:1
8
作者 李洋 贾敏 +4 位作者 吴云 李应红 宗豪华 宋慧敏 梁华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期429-436,共8页
Plasma synthetic jet actuator(PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity.In this paper,the influence of the air pressure on the performance of a two-electrod... Plasma synthetic jet actuator(PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity.In this paper,the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 k Pa to 100 k Pa.The energy consumed by the PSJA is roughly the same for all the pressure levels.Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures.The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases.The peak jet front velocity always appears at the first appearance of a jet,and it decreases gradually with the increase of the air pressure.A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 k Pa.The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures,and it drops with the rising of the air pressure.High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 k Pa. 展开更多
关键词 plasma synthetic jet actuator air pressure performance schlieren method
下载PDF
Parametric study of high-frequency characteristics of plasma synthetic jet actuator
9
作者 宋国正 宗豪华 +3 位作者 梁华 苏志 谢理科 郑猩 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第12期140-149,共10页
A major issue of plasma synthetic jet actuator(PSJA)is the severe performance deterioration at high working frequency.In this study,experiments and numerical simulation are combined together to investigate the influen... A major issue of plasma synthetic jet actuator(PSJA)is the severe performance deterioration at high working frequency.In this study,experiments and numerical simulation are combined together to investigate the influence of thermal conductivity,throat length(Lth)and discharge duration(Td)on the high-frequency characteristics of PSJA.Results show that the variation of the actuator thermal conductivity and discharge duration will not alter the saturation frequency of the actuator,whereas decreasing the throat length results in an increase of the saturation frequency.For a short-duration capacitive discharge of 1.7μs,a clear shock wave is issued from the orifice,followed by a weak jet.As a comparison,when the discharge duration is increased up to 202.6μs,a strong jet column is formed and no obvious shock wave can be visualized.Based on numerical simulation results,it becomes clear that the long-duration pulse-DC discharge is able to heat the cavity gas to a much higher temperature(3141 K)than capacitive discharge,greatly improving the conversion efficiency of the arc discharge energy to the internal energy of the cavity gas.In addition,high-speed Schlieren imaging is deployed to study the performance degradation mechanism of PSJA at high working frequency.Monitor of the exit jet grayscale indicates that as long as the saturation frequency is exceeded,the actuator becomes unstable due to insufficient refresh time.The higher the discharge frequency,the more frequently the phenomenon of‘misfires’will occur,which explains well the decaying jet total pressure at above saturation frequency. 展开更多
关键词 thermal conductivity throat length discharge duration plasma synthetic jet saturation frequency
下载PDF
Effects of single synthetic jet on turbulent boundary layer
10
作者 张津浩 李彪辉 +1 位作者 王宇飞 姜楠 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期379-388,共10页
The turbulent boundary layer(TBL)is actively controlled by the synthetic jet generated from a circular hole.According to the datasets of velocity fields acquired by a time-resolved particle image velocimetry(TR-PIV)sy... The turbulent boundary layer(TBL)is actively controlled by the synthetic jet generated from a circular hole.According to the datasets of velocity fields acquired by a time-resolved particle image velocimetry(TR-PIV)system,the average drag reduction rate of 6.2%in the downstream direction of the hole is obtained with control.The results of phase averaging show that the synthetic jet generates one vortex pair each period and the consequent vortex evolves into hairpin vortex in the environment with free-stream,while the reverse vortex decays rapidly.From the statistical average,it can be found that a low-speed streak is generated downstream.Induced by the two vortex legs,the fluid under them converges to the middle.The drag reduction effect produced by the synthetic jet is local,and it reaches a maximum value at x^(+)=400,where the drag reduction rate reaches about 12.2%.After the extraction of coherent structure from the spatial two-point correlation analysis,it can be seen that the synthetic jet suppresses the streamwise scale and wall–normal scale of the large scale coherent structure,and slightly weakens the spanwise motion to achieve the effect of drag reduction. 展开更多
关键词 turbulent boundary layer synthetic jet hairpin vortex drag reduction
下载PDF
Effect of gas compressibility on the characteristics of a synthetic jet flow
11
作者 丁英涛 苏日娜 李博 《Journal of Beijing Institute of Technology》 EI CAS 2012年第4期442-446,共5页
Numerical simulations are performed to investigate the effects of gas compressibility on the synthetic jet flow. A slot synthetic jet and a circular orifice synthetic jet are simulated assuming 2D and axis-symmetric b... Numerical simulations are performed to investigate the effects of gas compressibility on the synthetic jet flow. A slot synthetic jet and a circular orifice synthetic jet are simulated assuming 2D and axis-symmetric behavior. The velocity of orifice, frequency response and the compressibility are studied through simulation. The numerical results are validated against existing experimental and analytical data, and good agreement are obtained, Gas compressibility effects on the synthetic jet flow are discussed. In conclusion, for the two kinds of different synthetic jets studied in this paper, the critical values of Mach number are 0. 082 and 0. 033. 展开更多
关键词 synthetic jet gas compressibility gumerical simulation Mach number
下载PDF
Control of flow separation over a wing model with plasma synthetic jets
12
作者 苏志 宋国正 +5 位作者 宗豪华 梁华 李军 谢理科 刘雪城 孔维良 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第6期135-147,共13页
An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measur... An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measured by a force balance,and the velocity fields over the suction surface are captured by a particle imaging velocimetry system.Results show that the flow separation of the straight wing originates from the middle of the model and expands towards the wingtips as the angle of attack increases.The flow separation can be suppressed effectively by the PSJAs array.The best flow control effect is achieved at a dimensionless discharge frequency of F^+=1,with the peak lift coefficient increased by 10.5%and the stall angle postponed by 2°.To further optimize the power consumption of the PSJAs,the influence of the density of PSJAs on the flow control effect is investigated.A threshold of the density exits(with the spanwise spacing of PSJAs being 0.2 times of the chord length in the current research),below which the flow control effect starts to deteriorate remarkably.In addition,for comparison purposes,a dielectric barrier discharge(DBD)plasma actuator is installed at the same location of the PSJAs.At the same power consumption,4.9%increase of the peak lift coefficient is achieved by DBD,while that achieved by PSJAs reaches 5.6%. 展开更多
关键词 flow separation plasma synthetic jet DENSITY dielectric barrier discharge
下载PDF
Design and Performance Evaluation of Piezo-Driven Synthetic Jet Devices
13
作者 M. Chiatto L. de Luca 《World Journal of Engineering and Technology》 2016年第3期107-114,共9页
In the last two decades synthetic jet actuators have gained much interest among flow control techniques due to their short response time, high jet velocity and absence of traditional piping, that matches the requireme... In the last two decades synthetic jet actuators have gained much interest among flow control techniques due to their short response time, high jet velocity and absence of traditional piping, that matches the requirements of reduced size and low weight. A synthetic jet is generated by the diaphragm oscillation (generally driven by a piezo- electric element) in a relatively small cavity, producing periodic cavity pressure variations associated to cavity volume changes. The high pressure air exhausts through an orifice, converting membrane elastic energy in jet kinetic energy. This review paper faces the development of various lumped-element models (LEM) as practical tools to design and manufacturing actuators. LEM can predict quickly device performances such as frequency response in terms of membrane displacement, cavity pressure and jet velocity, as well as efficiency of energy conversion of input Joule power into useful kinetic power of air jet. Actuator performance is analyzed also by varying typical geometric parameters such as cavity height and orifice diameter and length, through a proper dimensionless form of the governing equations. 展开更多
关键词 synthetic jets Flow Control Lumped Element Model
下载PDF
Experimental study on shock interaction control of double wedge in high-enthalpy hypersonic flow subject to plasma synthetic jet
14
作者 Xuzhen XIE Qiang LIU +6 位作者 Yan ZHOU Zhenbing LUO Wei XIE Guanghui BAI Kai LUO Qiu WANG Jianjun WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期151-165,共15页
The hypersonic shock-shock interaction flow field at double-wedge geometries controlled by plasma synthetic jet actuator is experimentally studied in a Ma = 8 high-enthalpy shock tunnel with the purpose of exploring a... The hypersonic shock-shock interaction flow field at double-wedge geometries controlled by plasma synthetic jet actuator is experimentally studied in a Ma = 8 high-enthalpy shock tunnel with the purpose of exploring a novel technique for reducing surface heat flux in a real flight environment. The results demonstrate that increasing the discharge energy is advantageous in eliminating the shock wave, shifting the shock wave interaction point, and shortening the control response time. The oblique shock wave can be completely removed when the actuator's discharge energy grows from 0.4 J to 11.5 J, and the displacement of the shock wave interaction point increases by 124.56%, while the controlled response time is shortened by 30 μs. Besides, the reduction in diameter of the jet exit is firstly proved to have a negative impact on energy deposition in a working environment with incoming flow, which reduces the discharge energy and hence decreases the control effect. The shock wave control response time lengthens when the jet exits away from the second wedge. Along with comparing the change in wall heat flux at the second wedge over time, the control effect of plasma synthetic jet actuator with and without inflation is also analyzed. When plasma synthetic jet works in inflatable mode, both the ability to eliminate shock waves and the shifting effect of the shock wave interaction point are increased significantly, and the wall heat flux is also reduced. 展开更多
关键词 Hypersonic flow High-enthalpy flow Plasma synthetic jet Shock wave Flow control
原文传递
Trailing-edge shock loss control with self-sustaining synthetic jet in a supersonic compressor cascade
15
作者 Yinxin ZHU Wenqiang PENG +4 位作者 Zhenbing LUO Qiang LIU Wei XIE Pan CHENG Yan ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期366-377,共12页
To effectively reduce the loss of strong shock wave at the trailing edge of the supersonic cascade under high backpressure,a shock wave control method based on self-sustaining synthetic jet was proposed.The self-susta... To effectively reduce the loss of strong shock wave at the trailing edge of the supersonic cascade under high backpressure,a shock wave control method based on self-sustaining synthetic jet was proposed.The self-sustaining synthetic jet was applied on the pressure side of the blade with the blow slot and the bleed slot arranged upstream and downstream of the trailing-edge shock,respectively.The flow control mechanism and effects of parameters were investigated by numerical simulation.The results show that the self-sustaining synthetic jet forms an oblique shock wave in the cascade passage which slows down and pressurizes the airflow,and the expansion wave downstream of the blow slot weakens the shock strength which can effectively change the Mach reflection to regular reflection and thus weaken the shock loss.And the suction effect can reduce loss near blade surface.Compared with the baseline cascade,the self-sustaining jet actuator can reduce flow losses by 6.73%with proper location design and vibration of diaphragm. 展开更多
关键词 Compressors Flow control Mach reflection Trailing-edge shock Self-sustaining synthetic jet Shock waves Supersonic cascades
原文传递
Flight control of a flying wing aircraft based on circulation control using synthetic jet actuators
16
作者 Zhijie ZHAO Xiong DENG +3 位作者 Zhenbing LUO Wenqiang PENG Jianyuan ZHANG Jiefu LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期152-164,共13页
To achieve the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a longitudinal aerodynamic control technology based on circulation control using trailing-edge synthetic jet actua... To achieve the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a longitudinal aerodynamic control technology based on circulation control using trailing-edge synthetic jet actuators was proposed without the movement of rudders.Effects on the longitudinal aerodynamic characteristics of a small-sweep FWA were investigated.Then,flight tests were carried out to verify the control abilities,providing a novel technology for the design of a future rudderless FWA.Results show that synthetic jets could narrow the dead zone area,improve the flow velocity near the trailing edge,and then move the trailing-edge separation point and the leading-edge stagnation point downwards,which make the effective Attack of Angle(AOA)increase,thereby enhancing the pressure envelope area.Circulation control based on synthetic jets could improve the lift,drag and nose-down moment.The variations of lift and nosedown moment decrease with the growth of AOA caused by the improved reverse pressure gradient and the weakened circulation control efficiency.Finally,synthetic jet actuators were integrated into the trailing edge of a small-sweep FWA,which could realize the roll and pitch control without deflections of rudders during the cruise stage,and the maximum roll and pitch angular velocity are 12.64(°)/s and 8.51(°)/s,respectively. 展开更多
关键词 synthetic jets Flying wing aircraft Circulation control Control mechanism Flight test
原文传递
Novel yaw effector of a flying wing aircraft based on reverse dual synthetic jets
17
作者 Zhijie ZHAO Zhenbing LUO +4 位作者 Xiong DENG Jianyuan ZHANG Zhaofeng DONG Jiefu LIU Shiqing LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期151-163,共13页
For achieving the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a novel yaw effector based on Reverse Dual Synthetic Jets(RDSJ)was proposed without the movement of rudders.Eff... For achieving the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a novel yaw effector based on Reverse Dual Synthetic Jets(RDSJ)was proposed without the movement of rudders.Effects on aerodynamic characteristics of a small-sweep FWA and control mechanism were investigated by numerical simulations.Finally,reverse dual synthetic jet actuators were integrated into a real FWA and flight tests were firstly carried out.Numerical results show that RDSJ could make drag coefficient increase and weaken lift coefficient,which generate a yawing moment and a rolling moment in the same direction,realizing control of heading attitudes,but strong coupling with the pitching moment occurs at large angles of attack.For control mechanism,RDSJ could produce two reverse synthetic jets out of phases,improve the reverse pressure gradient and hence form alternate recirculation zones or even early large-area separation,which cause the rise of pressures before exits and the dip of pressures behind exits,achieving improvement of drag and the yawing moment.The results of flight tests support that RDSJ could realize control of heading attitudes without deflections of rudders during the cruise stage and achieve the maximal yaw angular velocity of 10.12(°)/s,verifying the feasibility of this novel yaw effector. 展开更多
关键词 Control mechanism Dual synthetic jets Flight tests Flying wing aircraft Yaw control
原文传递
Experimental study on heat transfer enhancement of square-array jet impingement by using an integrated synthetic jet actuator
18
作者 TAN JunWen LYU YuanWei +1 位作者 ZHANG JingZhou ZHANG JingYang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第12期3439-3449,共11页
A novel concept is proposed in the present study for improving the square-array jet impingement heat transfer by integrating a synthetic jet actuator into the array unit.To illustrate the potential of this concept,an ... A novel concept is proposed in the present study for improving the square-array jet impingement heat transfer by integrating a synthetic jet actuator into the array unit.To illustrate the potential of this concept,an experimental investigation is performed,wherein two jet Reynolds numbers(Re=3000 and 5000),three hole-to-hole pitches(X/d=Y/d=4,5 and 6),and three impinging distances(H/d=2,6 and 10)are considered while the synthetic jet is actuated at a fixed frequency of 180 Hz with a characteristic Reynolds number(Re_(0))of about 2430.The results show that the synthetic jet has rare influence on the stagnation heat transfer of square-array jet but effectively improves the local heat transfer at the central zone of array unit.Its potential is tightly dependent on the array layout,Reynolds number and impinging distance.In general,the spatially-averaged Nusselt number augment behaves more significantly for the situations with smaller jet Reynolds number and bigger impinging distance. 展开更多
关键词 jet impingement heat transfer enhancement square-array jet synthetic jet actuator
原文传递
Effects of single circular synthetic jet on turbulent boundary layer
19
作者 Jin-hao Zhang Biao-hui Li +1 位作者 Tian-hai Ping Nan Jiang 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第3期449-466,共18页
The periodic synthetic jet emerging from a circular orifice actively controls the turbulent boundary layer(TBL).A time-resolved particle image velocimetry(TR-PIV)system was designed to capture the velocity field datab... The periodic synthetic jet emerging from a circular orifice actively controls the turbulent boundary layer(TBL).A time-resolved particle image velocimetry(TR-PIV)system was designed to capture the velocity field database and based on the single-pixel ensemble correlation(SPEC)algorithm,an average drag reduction rate of 6.2%was obtained.The results show that the synthetic jet causes a wide range of low momentum zones and a low-speed streak in the downstream flow field.And the places where the disturbance intensity is strong are often accompanied by a larger velocity deficit.The instantaneous flow fields are visualized with the Finite-Time Lyapunov Exponent(FTLE),and the hairpin vortex packet composed of five hairpin vortices and the generation of new hairpin vortices are observed when there is no control.Under the action of the synthetic jet,the hairpin vortices are continuously generated from the jet orifice.The synthetic jet mainly achieves the drag reduction effect mainly by modulating the mean convection term cC and the spatial development term c^(D).The drag reduction effect appears in the region of x/δ0>0.38,and the maximum drag reduction rate is 12.2%at x/δ0=0.75,and then gradually decreased.Using proper orthogonal decomposition(POD),it is found that the synthetic jet reduces the energy proportion of the large-scale energetic structures.After the conditional average,the synthetic jet limits the influence range of bursting events at various scales in the near-wall region,and weakens the normal transport of momentum and energy brought about by large-scale ejection events(Q2 events)and the wall friction resistance caused by large-scale sweep events(Q4 events). 展开更多
关键词 synthetic jet hairpin vortex drag reduction turbulent boundary layer
原文传递
Lattice Boltzmann modeling of backward-facing step flow controlled by a synthetic jet
20
作者 Tian-yang Lu Hai-bao Hu +4 位作者 Jian Song Fan Zhang Heng Zhang Zhen-lin Xie Feng Ren 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第4期757-769,共13页
This article investigates the effect of a synthetic jet(SJ)on the flow over a backward-facing step(BFS)in the weakly turbulent flow regime using the lattice Boltzmann method.The SJ operates with various momentum coeff... This article investigates the effect of a synthetic jet(SJ)on the flow over a backward-facing step(BFS)in the weakly turbulent flow regime using the lattice Boltzmann method.The SJ operates with various momentum coefficients Cμand forcing frequencies f^(*)_(jet).As Cμincreases,the reattachment length decreases,whereas increasing f^(*)_(jet) causes the reattachment length at first decrease and then increase.A minimum reattachment length appears at Cμ=0.3125,f^(*)_(jet)=1.6,corresponding to a 40%reduction compared with the uncontrolled case.Two mechanisms for the mediated flow are found:(1)A suitable control frequency leads to a lock-on state that prompts vertical momentum transfer and laminarizes the flow near the separation point,(2)Regular vortices emerge after wall reattachment in controlled cases.Fast Fourier and wavelet transform of the velocity near the separation point reveal that the monitored frequency becomes locked-on when f^(*)_(jet)>1.6,making the flow quasi-periodic and dramatically reducing the reattachment length.Turbulent kinetic energy spectra indicate that the monitored frequencies are dominated by the forcing frequency and that active control laminarizes the local flow.Proper orthogonal decomposition is used to extract coherent structures at multiple scales.In the dominant mode,reattaching wake vortices are regulated by active control.In the second mode,irregular wake vortices emerge after f^(*)_(jet)=2,which attenuates the SJ forcing and increases the reattachment length.This study provides insights on typical flows past a BFS and will shed more light on the design of closed-loop control strategies for separation flows. 展开更多
关键词 Lattice Boltzmann method(LBM) flow control synthetic jet proper orthogonal decomposition
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部