利用集合预报成员初值误差在大气相空间中增长方向不同的特点,结合模式检验方法,构建持续性强降水可预报性评估指数(Index of Composite Predictability,ICP),为持续性强降水可预报性及数值预报误差增长机理研究提供科学方法。ICP综合...利用集合预报成员初值误差在大气相空间中增长方向不同的特点,结合模式检验方法,构建持续性强降水可预报性评估指数(Index of Composite Predictability,ICP),为持续性强降水可预报性及数值预报误差增长机理研究提供科学方法。ICP综合评估指数包括三个数学模型:集合预报成员单一评估指数定义、集合预报成员综合评估指数定义和集合预报成员预报能力定义。利用中国国家气象中心T213全球集合预报资料,选取江淮流域2010年6月17—25日和2011年6月4—12日2次持续性强降水过程,进行ICP综合评估指数应用试验,其中,单一评估指数选取中雨公平成功指数ETS、500 hPa高度场均方根误差分别代表模式降水预报能力和环流形势预报能力。结果显示:可预报性评估指数ICP可有效挑选出预报最好和最差的集合预报成员,两者对持续性强降水过程的大尺度环流系统、中尺度影响系统、降水过程预报差异显著,预报最好成员对影响持续性强降水的大尺度环流形势(阻塞高压、西太平洋副热带高压和东亚大槽)的位置和强度及演变过程、低层中尺度影响系统(如切变线和西南低涡)发生发展过程预报,以及降水发生时间和落区预报与实况更接近,预报更成功,持续性强降水可预报性综合评估指数ICP合理可靠。展开更多
针对当前暴雨预报检验采用二分类事件检验方法存在的双重惩罚导致评分过低,没有考虑到中国暴雨可预报性时、空分布不均,不便于对比分析不同区域暴雨预报能力差异等问题,为了发展基于可预报性的新型暴雨预报评分方法,在综合分析影响预报...针对当前暴雨预报检验采用二分类事件检验方法存在的双重惩罚导致评分过低,没有考虑到中国暴雨可预报性时、空分布不均,不便于对比分析不同区域暴雨预报能力差异等问题,为了发展基于可预报性的新型暴雨预报评分方法,在综合分析影响预报员暴雨预报信心的主要因素(暴雨气候统计特征、天气影响系统运动尺度特征及数值模式预报能力等)基础上,利用2008—2016年4—10月中国国家气象信息中心5 km×5 km分辨率的多源降水融合格点分析资料、站点降水观测资料和中国国家级业务区域模式降水预报资料以及扩展空间暴雨样本统计方法,构建了一种新型的中国暴雨可预报性综合指数(Synthetic Predictability Index of Heavy Rainfall,以下简称SPI)数学模型,以定量描述中国各区域的暴雨可预报性特征。SPI数学模型由暴雨气候频率、暴雨面积比率和模式暴雨预报成功指数(Threat Score,TS)3个分量组成,计算了2008—2016年4—10月SPI的3个分量及其时、空变化特征。分析结果显示:暴雨面积比率对SPI的时间和空间变化影响最大,两者偏相关系数大于0.9;其次是暴雨气候频率的影响,两者偏相关系数值为0.8左右;第三是模式暴雨预报TS评分的影响,两者的偏相关系数为0.7左右。分析还发现,SPI大值区随季节而变化,空间分布不均匀:4—5月,可预报性大值区主要分布在华南地区;6—7月,主要分布在江淮流域; 7月中旬至8月,大值中心从江淮北部移到华北和东北地区;9月,副热带高压南撤,大值中心也相应南撤。展开更多
文摘利用集合预报成员初值误差在大气相空间中增长方向不同的特点,结合模式检验方法,构建持续性强降水可预报性评估指数(Index of Composite Predictability,ICP),为持续性强降水可预报性及数值预报误差增长机理研究提供科学方法。ICP综合评估指数包括三个数学模型:集合预报成员单一评估指数定义、集合预报成员综合评估指数定义和集合预报成员预报能力定义。利用中国国家气象中心T213全球集合预报资料,选取江淮流域2010年6月17—25日和2011年6月4—12日2次持续性强降水过程,进行ICP综合评估指数应用试验,其中,单一评估指数选取中雨公平成功指数ETS、500 hPa高度场均方根误差分别代表模式降水预报能力和环流形势预报能力。结果显示:可预报性评估指数ICP可有效挑选出预报最好和最差的集合预报成员,两者对持续性强降水过程的大尺度环流系统、中尺度影响系统、降水过程预报差异显著,预报最好成员对影响持续性强降水的大尺度环流形势(阻塞高压、西太平洋副热带高压和东亚大槽)的位置和强度及演变过程、低层中尺度影响系统(如切变线和西南低涡)发生发展过程预报,以及降水发生时间和落区预报与实况更接近,预报更成功,持续性强降水可预报性综合评估指数ICP合理可靠。
文摘针对当前暴雨预报检验采用二分类事件检验方法存在的双重惩罚导致评分过低,没有考虑到中国暴雨可预报性时、空分布不均,不便于对比分析不同区域暴雨预报能力差异等问题,为了发展基于可预报性的新型暴雨预报评分方法,在综合分析影响预报员暴雨预报信心的主要因素(暴雨气候统计特征、天气影响系统运动尺度特征及数值模式预报能力等)基础上,利用2008—2016年4—10月中国国家气象信息中心5 km×5 km分辨率的多源降水融合格点分析资料、站点降水观测资料和中国国家级业务区域模式降水预报资料以及扩展空间暴雨样本统计方法,构建了一种新型的中国暴雨可预报性综合指数(Synthetic Predictability Index of Heavy Rainfall,以下简称SPI)数学模型,以定量描述中国各区域的暴雨可预报性特征。SPI数学模型由暴雨气候频率、暴雨面积比率和模式暴雨预报成功指数(Threat Score,TS)3个分量组成,计算了2008—2016年4—10月SPI的3个分量及其时、空变化特征。分析结果显示:暴雨面积比率对SPI的时间和空间变化影响最大,两者偏相关系数大于0.9;其次是暴雨气候频率的影响,两者偏相关系数值为0.8左右;第三是模式暴雨预报TS评分的影响,两者的偏相关系数为0.7左右。分析还发现,SPI大值区随季节而变化,空间分布不均匀:4—5月,可预报性大值区主要分布在华南地区;6—7月,主要分布在江淮流域; 7月中旬至8月,大值中心从江淮北部移到华北和东北地区;9月,副热带高压南撤,大值中心也相应南撤。